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Abstract

Fuzzing is a software testing technique that quickly and
automatically explores the input space of a program without
knowing its internals. Therefore, developers commonly use
fuzzing as part of test integration throughout the software
development process. Unfortunately, it also means that such a
blackbox and the automatic natures of fuzzing are appealing
to adversaries who are looking for zero-day vulnerabilities.

To solve this problem, we propose a new mitigation ap-
proach, called FUZZIFICATION, that helps developers protect
the released, binary-only software from attackers who are ca-
pable of applying state-of-the-art fuzzing techniques. Given a
performance budget, this approach aims to hinder the fuzzing
process from adversaries as much as possible. We propose
three FUZZIFICATION techniques: 1) SpeedBump, which am-
plifies the slowdown in normal executions by hundreds of
times to the fuzzed execution, 2) BranchTrap, interfering with
feedback logic by hiding paths and polluting coverage maps,
and 3) AntiHybrid, hindering taint-analysis and symbolic exe-
cution. Each technique is designed with best-effort, defensive
measures that attempt to hinder adversaries from bypassing
FUZZIFICATION.

Our evaluation on popular fuzzers and real-world applica-
tions shows that FUZZIFICATION effectively reduces the num-
ber of discovered paths by 70.3% and decreases the number of
identified crashes by 93.0% from real-world binaries, and de-
creases the number of detected bugs by 67.5% from LAVA-M
dataset while under user-specified overheads for common
workloads. We discuss the robustness of FUZZIFICATION
techniques against adversarial analysis techniques. We open-
source our FUZZIFICATION system to foster future research.

1 Introduction

Fuzzing is a software testing technique that aims to find soft-
ware bugs automatically. It keeps running the program with
randomly generated inputs and waits for bug-exposing behav-
iors such as crashing or hanging. It has become a standard

practice to detect security problems in complex, modern soft-
ware [40, 72, 37, 25, 23, 18, 9]. Recent research has built
several efficient fuzzing tools [57, 52, 29, 34, 6, 64] and found
a large number of security vulnerabilities [51, 72, 59, 26, 10].

Unfortunately, advanced fuzzing techniques can also be
used by malicious attackers to find zero-day vulnerabilities.
Recent studies [61, 58] confirm that attackers predominantly
prefer fuzzing tools over others (e.g., reverse engineering) in
finding vulnerabilities. For example, a survey of information
security experts [28] shows that fuzzing techniques discover
4.83 times more bugs than static analysis or manual detec-
tion. Therefore, developers might want to apply anti-fuzzing
techniques on their products to hinder fuzzing attempts by
attackers, similar in concept to using obfuscation techniques
to cripple reverse engineering [12, 13].

In this paper, we propose a new direction of binary protec-
tion, called FUZZIFICATION, that hinders attackers from ef-
fectively finding bugs. Specifically, attackers may still be able
to find bugs from the binary protected by FUZZIFICATION,
but with significantly more effort (e.g., CPU, memory, and
time). Thus, developers or other trusted parties who get the
original binary are able to detect program bugs and synthe-
size patches before attackers widely abuse them. An effective
FUZZIFICATION technique should enable the following three
features. First, it should be effective for hindering existing
fuzzing tools, finding fewer bugs within a fixed time; second,
the protected program should still run efficiently in normal
usage; third, the protection code should not be easily identi-
fied or removed from the protected binary by straightforward
analysis techniques.

No existing technique can achieve all three goals simul-
taneously. First, software obfuscation techniques, which
impede static program analysis by randomizing binary rep-
resentations, seem to be effective in thwarting fuzzing at-
tempts [12, 13]. However, we find that it falls short of
FUZZIFICATION in two ways. Obfuscation introduces unac-
ceptable overhead to normal program executions. Figure 1(a)
shows that obfuscation slows the execution by at least 1.7
times when using UPX [60] and up to 25.0 times when using
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Figure 1: Impact of obfuscation techniques on fuzzing. (a) Obfus-
cation techniques introduce 1.7x-25.0x execution slow down. (b)
and (c) fuzzing obfuscated binaries discovers fewer program paths
over time, but gets a similar number of paths over executions.

LLVM-obfuscator [33]. Also, obfuscation cannot effectively
hinder fuzzers in terms of path exploration. It can slow each
fuzzed execution, as shown in Figure 1(b), but the path discov-
ery per execution is almost identical to that of fuzzing the orig-
inal binary, as shown in Figure 1(c). Therefore, obfuscation is
not an ideal FUZZIFICATION technique. Second, software di-
versification changes the structure and interfaces of the target
application to distribute diversified versions [35, 3, 53, 50].
For example, the technique of N-version software [3] is able
to mitigate exploits because attackers often depend on clear
knowledge of the program states. However, software diver-
sification is powerless on hiding the original vulnerability
from the attacker’s analysis; thus it is not a good approach for
FUZZIFICATION.

In this paper, we propose three FUZZIFICATION techniques
for developers to protect their programs from malicious
fuzzing attempts: SpeedBump, BranchTrap, and AntiHybrid.
The SpeedBump technique aims to slow program execution
during fuzzing. It injects delays to cold paths, which normal
executions rarely reach but that fuzzed executions frequently
visit. The BranchTrap technique inserts a large number of
input-sensitive jumps into the program so that any input drift
will significantly change the execution path. This will induce
coverage-based fuzzing tools to spend their efforts on injected
bug-free paths instead of on the real ones. The AntiHybrid
technique aims to thwart hybrid fuzzing approaches that incor-
porate traditional fuzzing methods with dynamic taint analysis
and symbolic execution.

We develop defensive mechanisms to hinder attackers iden-
tifying or removing our techniques from protected binaries.
For SpeedBump, instead of calling the sleep function, we
inject randomly synthesized CPU-intensive operations to cold
paths and create control-flow and data-flow dependencies
between the injected code and the original code. We reuse
existing binary code to realize BranchTrap to prevent an ad-
versary from identifying the injected branches.

To evaluate our FUZZIFICATION techniques, we apply
them on the LAVA-M dataset and nine real-world applica-
tions, including libjpeg, libpng, libtiff, pcre2, readelf,
objdump, nm, objcopy, and MuPDF. These programs are
extensively used to evaluate the effectiveness of fuzzing
tools [19, 11, 48, 67]. Then, we use four popular fuzzers
—AFL, HonggFuzz, VUzzer, and QSym— to fuzz the origi-
nal programs and the protected ones for the same amount of
time. On average, fuzzers detect 14.2 times more bugs from
the original binaries and 3.0 times more bugs from the LAVA-
M dataset than those from “fuzzified” ones. At the same time,
our FUZZIFICATION techniques decrease the total number
of discovered paths by 70.3%, and maintain user-specified
overhead budget. This result shows that our FUZZIFICATION
techniques successfully decelerate fuzzing performance on
vulnerability discovery. We also perform an analysis to show
that data-flow and control-flow analysis techniques cannot
easily disarm our techniques.

In this paper, we make the following contributions:

o We first shed light on the new research direction of anti-
fuzzing schemes, so-called, FUZZIFICATION.

e We develop three FUZZIFICATION techniques to slow
each fuzzed execution, to hide path coverage, and to
thwart dynamic taint-analysis and symbolic execution.

e We evaluate our techniques on popular fuzzers and com-
mon benchmarks. Our results show that the proposed
techniques hinder these fuzzers, finding 93% fewer bugs
from the real-world binaries and 67.5% fewer bugs from
the LAVA-M dataset, and 70.3% less coverage while
maintaining the user-specified overhead budget.

We will release the source code of our work at https:

//github.com/sslab-gatech/fuzzification.

2 Background and Problem

2.1 Fuzzing Techniques

The goal of fuzzing is to automatically detect program bugs.
For a given program, a fuzzer first creates a large number
of inputs, either by random mutation or by format-based
generation. Then, it runs the program with these inputs to see
whether the execution exposes unexpected behaviors, such as
a crash or an incorrect result. Compared to manual analysis or
static analysis, fuzzing is able to execute the program orders
of magnitude more times and thus can explore more program
states to maximize the chance of finding bugs.

2.1.1 Fuzzing with Fast Execution

A straightforward way to improve fuzzing efficiency is to
make each execution faster. Current research highlights sev-
eral fast execution techniques, including (1) customized sys-
tem and hardware to accelerate fuzzed execution and (2)
parallel fuzzing to amortize the absolute execution time in
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large-scale. Among these techniques, AFL uses the fork
server and persistent mode to avoid the heavy process cre-
ation and can accelerate fuzzing by a factor of two or
more [68, 69]. AFL-PT, KAFL, and HonggFuzz utilize hard-
ware features such as Intel Process Tracing (PT) and Branch
Trace Store (BTS) to collect code coverage efficiently to guide
fuzzing [65, 54, 23]. Recently, Xu et al. designed new oper-
ating system primitives, like efficient system calls, to speed
up fuzzing on multi-core machines [64].

2.1.2 Fuzzing with Coverage-guidance

Coverage-guided fuzzing collects the code coverage for each
fuzzed execution and prioritizes fuzzing the input that has
triggered new coverage. This fuzzing strategy is based on two
empirical observations: (1) a higher path coverage indicates a
higher chance of exposing bugs; and (2) mutating inputs that
ever trigger new paths is likely to trigger another new path.
Most popular fuzzers take code coverage as guidance, like
AFL, HonggFuzz, and LibFuzzer, but with different methods
for coverage representation and coverage collection.

Coverage representation. Most fuzzers take basic blocks
or branches to represent the code coverage. For example,
HonggFuzz and VUzzer use basic block coverage, while AFL
instead considers the branch coverage, which provides more
information about the program states. Angora [11] combines
branch coverage with the call stack to further improve cov-
erage accuracy. However, the choice of representation is a
trade-off between coverage accuracy and performance, as
more fine-grained coverage introduces higher overhead to
each execution and harms the fuzzing efficiency.

Coverage collection. If the source code is available, fuzzers
can instrument the target program during compilation or as-
sembly to record coverage at runtime, like in AFL-LLVM
mode and LibFuzzer. Otherwise, fuzzers have to utilize either
static or dynamic binary instrumentation to achieve a similar
purpose, like in AFL-QEMU mode [70]. Also, several fuzzers
leverage hardware features to collect the coverage [65, 54, 23].
Fuzzers usually maintain their own data structure to store cov-
erage information. For example, AFL and HonggFuzz use a
fixed-size array and VUzzer utilizes a Set data structure in
Python to store their coverage. However, the size of the struc-
ture is also a trade-off between accuracy and performance: an
overly small memory cannot capture every coverage change,
while an overly large memory introduces significant overhead.
For example, AFL’s performance drops 30% if the bitmap
size is changed from 64KB to 1MB [19].

2.1.3 Fuzzing with Hybrid Approaches

Hybrid approaches are proposed to help solve the limitations
of existing fuzzers. First, fuzzers do not distinguish input
bytes with different types (e.g., magic number, length speci-
fier) and thus may waste time mutating less important bytes
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Figure 2: Workflow of FUZZIFICATION protection. Developers cre-
ate a protected binary with FUZZIFICATION techniques and release
it to public. Meanwhile, they send the normally compiled binary to
trusted parties. Attackers cannot find many bugs from the protected
binary through fuzzing, while trusted parties can effectively find
significantly more bugs and developers can patch them in time.

that cannot affect any control flow. In this case, taint analysis
is used to help find which input bytes are used to determine
branch conditions, like VUzzer [52]. By focusing on the mu-
tation of these bytes, fuzzers can quickly find new execution
paths. Second, fuzzers cannot easily resolve complicated
conditions, such as comparison with magic value or check-
sum. Several works [57, 67] utilize symbolic execution to
address this problem, which is good at solving complicated
constraints but incurs high overhead.

2.2 FUZZIFICATION Problem

Program developers may want to completely control the bug-
finding process, as any bug leakage can bring attacks and
lead to financial loss [45]. They demand exposing bugs by
themselves or by trusted parties, but not by malicious end-
users. Anti-fuzzing techniques can help to achieve that by
decelerating unexpected fuzzing attempts, especially from
malicious attackers.

We show the workflow of FUZZIFICATION in Figure 2. De-
velopers compile their code in two versions. One is compiled
with FUZZIFICATION techniques to generate a protected bi-
nary, and the other is compiled normally to generate a normal
binary. Then, developers distribute the protected binary to
the public, including normal users and malicious attackers.
Attackers fuzz the protected binary to find bugs. However,
with the protection of FUZZIFICATION techniques, they can-
not find as many bugs quickly. At the same time, developers
distribute the normal binary to trusted parties. The trusted
parties can launch fuzzing on the normal binary with the na-
tive speed and thus can find more bugs in a timely manner.
Therefore, developers who receive bug reports from trusted
parties can fix the bug before attackers widely abuse it.



Anti-fuzz candidates  Effective = Generic  Efficient = Robust
Pack & obfuscation v (4 X v
Bug injection v 4 X X
Fuzzer identification 4 X 4 X
Emulator bugs 4 X v 4
FUZZIFICATION 4 (4 (4 v

Table 1: Possible design choices and evaluation with our goals.

2.2.1 Threat Model

We consider motivated attackers who attempt to find software
vulnerabilities through state-of-the-art fuzzing techniques, but
with limited resources like computing power (at most similar
resources as trusted parties). Adversaries have the binary
protected by FUZZIFICATION and they have knowledge of
our FUZZIFICATION techniques. They can use off-the-shelf
binary analysis techniques to disarm FUZZIFICATION from
the protected binary. Adversaries who have access to the
unprotected binary or even to program source code (e.g.,
inside attackers, or through code leakage) are out of the scope
of this study.

2.2.2 Design Goals and Choices

A FUZZIFICATION technique should achieve the following
four goals simultaneously:

o Effective: It should effectively reduce the number of
bugs found in the protected binary, compared to that
found in the original binary.

e Generic: It tackles the fundamental principles of
fuzzing and is generally applicable to most fuzzers.

e Efficient: It introduces minor overhead to the normal
program execution.

e Robust: It is resistant to the adversarial analysis trying
to remove it from the protected binary.

With these goals in mind, we examine four design choices

for hindering malicious fuzzing, shown in Table 1. Unfortu-
nately, no method can satisfy all goals.

Packing/obfuscation. Software packing and obfuscation are
mature techniques against reverse engineering, both generic
and robust. However, they usually introduce higher perfor-
mance overhead to program executions, which not only hin-
ders fuzzing, but also affects the use of normal users.

Bug injection. Injecting arbitrary code snippets that trigger
non-exploitable crashes can cause additional bookkeeping
overhead and affect end users in unexpected ways [31].

Fuzzer identification. Detecting the fuzzer process and
changing the execution behavior accordingly can be bypassed
easily (e.g., by changing fuzzer name). Also, we cannot
enumerate all fuzzers or fuzzing techniques.

Emulator bugs. Triggering bugs in dynamic instrumenta-
tion tools [4, 14, 38] can interrupt fuzzing [42, 43]. However,
it requires strong knowledge of the fuzzer, so it is not generic.
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Figure 3: Overview of FUZZIFICATION process. It first runs the
program with given test cases to get the execution frequency profile.
With the profile, it instruments the program with three techniques.
The protected binary is released if it satisfies the overhead budget.

2.3 Design Overview

We propose three FUZZIFICATION techniques — SpeedBump,
BranchTrap, and AntiHybrid- to target each fuzzing tech-
nique discussed in §2.1. First, SpeedBump injects fine-
grained delay primitives into cold paths that fuzzed execu-
tions frequently touch but normal executions rarely use (§3).
Second, BranchTrap fabricates a number of input-sensitive
branches to induce the coverage-based fuzzers to waste their
efforts on fruitless paths (§4). Also, it intentionally saturates
the code coverage storage with frequent path collisions so
that the fuzzer cannot identify interesting inputs that trigger
new paths. Third, AntiHybrid transforms explicit data-flows
into implicit ones to prevent data-flow tracking through taint
analysis, and inserts a large number of spurious symbols to
trigger path explosion during the symbolic execution (§5).

Figure 3 shows an overview of our FUZZIFICATION sys-
tem. It takes the program source code, a set of commonly
used test cases, and an overhead budget as input and produces
a binary protected by FUZZIFICATION techniques. Note that
FUZZIFICATION relies on developers to determine the appro-
priate overhead budget, whatever they believe will create a
balance between the functionality and security of their pro-
duction. @ We compile the program to generate a normal
binary and run it with the given normal test cases to collect
basic block frequencies. The frequency information tells us
which basic blocks are rarely used by normal executions. @
Based on the profile, we apply three FUZZIFICATION tech-
niques to the program and generate a temporary protected
binary. € We measure the overhead of the temporary binary
with the given normal test cases again. If the overhead is
over the budget, we go back to step @ to reduce the slow
down to the program, such as using shorter delay and adding
less instrumentation. If the overhead is far below the bud-
get, we increase the overhead accordingly. Otherwise, @ we
generate the protected binary.



3 SpeedBump: Amplifying Delay in Fuzzing

We propose a technique called SpeedBump to slow the fuzzed
execution while minimizing the effect to normal executions.
Our observation is that the fuzzed execution frequently falls
into paths such as error-handling (e.g., wrong MAGIC bytes)
that the normal executions rarely visit. We call them the cold
paths. Injecting delays in cold paths will significantly slow
fuzzed executions but will not affect regular executions that
much. We first identify cold paths from normal executions
with the given test cases and then inject crafted delays into
least-executed code paths. Our tool automatically determines
the number of code paths to inject delays and the length of
each delay so that the protected binary has overhead under
the user-defined budget during normal executions.

Basic block frequency profiling. FUZZIFICATION gener-
ates a basic block frequency profile to identify cold paths. The
profiling process follows three steps. First, we instrument
the target programs to count visited basic blocks during the
execution and generate a binary for profiling. Second, with
the user-provided test cases, we run this binary and collect the
basic blocks visited by each input. Third, FUZZIFICATION
analyzes the collected information to identify basic blocks
that are rarely executed or never executed by valid inputs.
These blocks are treated as cold paths in delay injection.

Our profiling does not require the given test cases to cover
100% of all legitimate paths, but just to trigger the commonly
used functionalities. We believe this is a practical assumption,
as experienced developers should have a set of test cases
covering most of the functionalities (e.g., regression test-
suites). Optionally, if developers can provide a set of test
cases that trigger uncommon features, our profiling results
will be more accurate. For example, for applications parsing
well-known file formats (e.g., readelf parses ELF binaries),
collecting valid/invalid dataset is straightforward.

Configurable delay injection. We perform the following
two steps repeatedly to determine the set of code blocks to
inject delays and the length of each delay:

e We start by injecting a 30ms delay to 3% of the least-
executed basic blocks in the test executions. We find that
this setting is close enough to the final evaluation result.

e We measure the overhead of the generated binary. If it
does not exceed the user-defined overhead budget, we
go to the previous step to inject more delay into more
basic blocks. Otherwise, we use the delay in the previous
round as the final result.

Our SpeedBump technique is especially useful for developers
who generally have a good understanding of their applica-
tions, as well as the requirements for FUZZIFICATION. We
provide five options that developers can use to finely tune
SpeedBump’s effect. Specifically, MAX_OVERHEAD defines the
overhead budget. Developers can specify any value as long
as they feel comfortable with the overhead. DELAY_LENGTH
specifies the range of delays. We use 10ms to 300ms in the
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Figure 4: Protecting readelf with different overhead budgets.
While satisfying the overhead budget, (a) demonstrates the maxi-
mum ratio of instrumentation for each delay length, and (b) displays
the execution speed of AFL-QEMU on protected binaries.

evaluation. INCLUDE_INCORRECT determines whether or not
to inject delays to error-handling basic blocks (i.e., locations
that are only executed by invalid inputs), which is enabled
by default. INCLUDE_NON_EXEC and NON_EXEC_RATIO specify
whether to inject delays into how ever many basic blocks are
never executed during test execution. This is useful when
developers do not have a large set of test cases.

Figure 4 demonstrates the impact of different options on
protecting the readelf binary with SpeedBump. We collect
1,948 ELF files on the Debian system as valid test cases and
use 600 text and image files as invalid inputs. Figure 4(a)
shows the maximum ratio of basic blocks that we can inject
delay into while introducing overhead less than 1% and 3%.
For a 1ms delay, we can instrument 11% of the least-executed
basic blocks for a 1% overhead budget and 12% for 3% over-
head. For a 120ms delay, we cannot inject any blocks for
1% overhead and can inject only 2% of the cold paths for
3% overhead. Figure 4(b) shows the actual performance of
AFL-QEMU when it fuzzes SpeedBump-protected binaries.
The ratio of injected blocks is determined as in Figure 4(a).
The result shows that SpeedBump with a 30ms delay slows
the fuzzer by more than 50x. Therefore, we use 30ms and
the corresponding 3% instrumentation as the starting point.

3.1 Analysis-resistant Delay Primitives

As attackers may use program analysis to identify and re-
move simple delay primitives (e.g., calling sleep), we design
robust primitives that involve arithmetic operations and are
connected with the original code base. Our primitives are
based on CSmith [66], which can generate random and bug-
free code snippets with refined options. For example, CSmith
can generate a function that takes parameters, performs arith-
metic operations, and returns a specific type of value. We
modified CSmith to generate code that has data dependencies
and code dependencies to the original code. Specifically, we
pass a variable from the original code to the generated code
as an argument, make a reference from the generated code to
the original one, and use the return value to modify a global
variable of the original code. Figure 5 shows an example of
our delay primitives. It declares a local variable PASS_VAR



//Predefined global variables
int32_t GLOBAL_VAR1 = 1, GLOBAL_VAR2 = 2;
//Randomly generated code
int32_t * func(int32_t p6) {
int32_t *10[1000];
GLOBAL_VAR1 = 0x4507L; // affect global var.
int32_t *11 = &g8[1][0];
for (int i = 0; i < 1000; i++)

® 9 U AW —

9 10[i] = p6; // affect local var from argv.
10 (*g7) = func2(g6++);

11 (*g5) |= ~('func3(**g4 = ~OUL));

12 return 11; // affect global var.

13 }

14 //Inject above function for delay
15 int32_t PASS_VAR = 20;
16 GLOBAL_VAR2 = func(PASS_VAR);

Figure 5: Example delay primitive. Function func updates global
variables to build data-flow dependency with original program.

and modifies global variables GLOBAL_VAR1 and GLOBAL_VAR?2.
In this way, we introduce data-flow dependency between the
original code and the injected code (line 6, 9 and 12), and
change the program state without affecting the original pro-
gram. Although the code is randomly generated, it is tightly
coupled with the original code via data-flow and control-flow
dependencies. Therefore, it is non-trivial for common binary
analysis techniques, like dead-code elimination, to distinguish
it from the original code. We repeatedly run the modified
CSmith to find appropriate code snippets that take a specific
time (e.g., 10ms) for delay injection.

Safety of delay primitives. We utilize the safety checks
from CSmith and FUZZIFICATION to guarantee that the gen-
erated code is bug-free. First, we use CSmith’s default safety
checks, which embed a collection of tests in the code, in-
cluding integer, type, pointer, effect, array, initialization, and
global variable. For example, CSmith conducts pointer anal-
ysis to detect any access to an out-of-scope stack variable
or null pointer dereference, uses explicit initialization to pre-
vent uninitialized usage, applies math wrapper to prevent
unexpected integer overflow, and analyzes qualifiers to avoid
any mismatch. Second, FUZZIFICATION also has a separate
step to help detect bad side effects (e.g., crashes) in delay
primitives. Specifically, we run the code 10 times with fixed
arguments and discard it if the execution shows any error. Fi-
nally, FUZZIFICATION embeds the generated primitives with
the same fixed argument to avoid errors.

Fuzzers aware of error-handling blocks. Recent fuzzing
proposals, like VUzzer [52] and T-Fuzz [48], identify error-
handling basic blocks through profiling and exclude them
from the code coverage calculation to avoid repetitive execu-
tions. This may affect the effectiveness of our SpeedBump
technique, which uses a similar profiling step to identify cold
paths. Fortunately, the cold paths from SpeedBump include
not only error-handling basic blocks, but also rarely executed
functional blocks. Further, we use similar methods to identify
error-handling blocks from the cold paths and provide de-
velopers the option to choose not to instrument these blocks.
Thus, our FUZZIFICATION will focus on instrumenting rarely
executed functional blocks to maximize its effectiveness.

4 BranchTrap: Blocking Coverage Feedback

Code coverage information is widely used by fuzzers to find
and prioritize interesting inputs [72, 37, 23]. We can make
these fuzzers diligent fools if we insert a large number of con-
ditional branches whose conditions are sensitive to slight in-
put changes. When the fuzzing process falls into these branch
traps, coverage-based fuzzers will waste their resources to ex-
plore (a huge number of) worthless paths. Therefore, we pro-
pose the technique of BranchTrap to deceive coverage-based
fuzzers by misleading or blocking the coverage feedback.

4.1 Fabricating Fake Paths on User Input

The first method of BranchTrap is to fabricate a large number
of conditional branches and indirect jumps, and inject them
into the original program. Each fabricated conditional branch
relies on some input bytes to determine to take the branch
or not, while indirect jumps calculate their targets based on
user input. Thus, the program will take different execution
paths even when the input slightly changes. Once a fuzzed
execution triggers the fabricated branch, the fuzzer will set a
higher priority to mutate that input, resulting in the detection
of more fake paths. In this way, the fuzzer will keep wasting
its resources (i.e., CPU and memory) to inspect fruitless but
bug-free fake paths.

To effectively induce the fuzzers focusing on fake branches,
we consider the following four design aspects. First,
BranchTrap should fabricate a sufficient number of fake paths
to affect the fuzzing policy. Since the fuzzer generates various
variants from one interesting input, fake paths should provide
different coverage and be directly affected by the input so that
the fuzzer will keep unearthing the trap. Second, the injected
new paths introduce minimal overhead to regular executions.
Third, the paths in BranchTrap should be deterministic re-
garding user input, which means that the same input should
go through the same path. The reason is that some fuzzers
can detect and ignore non-deterministic paths (e.g., AFL ig-
nores one input if two executions with it take different paths).
Finally, BranchTrap cannot be easily identified or removed
by adversaries.

A trivial implementation of BranchTrap is to inject a jump
table and use some input bytes as the index to access the
table (i.e., different input values result in different jump tar-
gets). However, this approach can be easily nullified by sim-
ple adversarial analysis. We design and implement a robust
BranchTrap with code-reuse techniques, similar in concept
to the well-known return-oriented programming (ROP) [55].

4.1.1 BranchTrap with CFG Distortion

To harden BranchTrap, we diversify the return addresses of
each injected branch according to the user input. Our idea is
inspired by ROP, which reuses existing code for malicious at-
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Figure 6: BranchTrap by reusing the existing ROP gadgets in the
original binary. Among functionally equivalent gadgets, BranchTrap
picks the one based on function arguments.

tacks by chaining various small code snippets. Our approach
can heavily distort the program control-flow and makes nulli-
fying BranchTrap more challenging for adversaries. The im-
plementation follows three steps. First, BranchTrap collects
function epilogues from the program assembly (generated
during program compilation). Second, function epilogues
with the same instruction sequence are grouped into one jump
table. Third, we rewrite the assembly so that the function will
retrieve one of several equivalent epilogues from the corre-
sponding jump table to realize the original function return,
using some input bytes as the jump table index. As we re-
place the function epilogue with a functional equivalent, it
guarantees the identical operations as the original program.

Figure 6 depicts the internal of the BranchTrap implemen-

tation at runtime. For one function, BranchTrap @ calculates
the XORed value of all arguments. BranchTrap uses this value
for indexing the jump table (i.e., candidates for epilogue ad-
dress). @ BranchTrap uses this value as the index to visit the
jump table and obtains the concrete address of the epilogue.
To avoid out-of-bounds array access, BranchTrap divides the
XORed value by the length of the jump table and takes the
remainder as the index. €@ After determining the target jump
address, the control-flow is transferred to the gadget (e.g.,
the same pop rbp; pop ri15; ret gadget). @ Finally, the
execution returns to the original return address.

The ROP-based BranchTrap has three benefits:

e Effective: Control-flow is constantly and sensitively
changed together with the user input mutation; thus
FUZZIFICATION can introduce a sufficient number of
unproductive paths and make coverage feedback less ef-
fective. Also, BranchTrap guarantees the same control-
flow on the same input (i.e., deterministic path) so that
the fuzzer will not ignore these fake paths.

o Low overhead: BranchTrap introduces low overhead
to normal user operations (e.g., less than 1% overhead)
due to its lightweight operations (Store argument; XOR;
Resolve jump address; Jump to gadget).

e Robust: The ROP-based design significantly increases
the complexity for an adversary to identify or patch
the binary. We evaluate the robustness of BranchTrap
against adversarial analysis in §6.4.

4.2 Saturating Fuzzing State

The second method of BranchTrap is to saturate the fuzzing
state, which blocks the fuzzers from learning the progress in
the code coverage. Different from the first method, which
induces fuzzers focusing on fruitless inputs, our goal here
is to prevent the fuzzers from finding real interesting ones.
To achieve this, BranchTrap inserts a massive number of
branches to the program, and exploits the coverage repre-
sentation mechanism of each fuzzer to mask new findings.
BranchTrap is able to introduce an extensive number (e.g.,
10K to 100K) of deterministic branches to some rarely visited
basic blocks. Once the fuzzer reaches these basic blocks, its
coverage table will quickly fill up. In this way, most of the
newly discovered paths in the following executions will be
treated as visited, and thus the fuzzer will discard the input
that in fact explores interesting paths. For example, AFL
maintains a fixed-size bitmap (i.e., 64KB) to track edge cov-
erage. By inserting a large number of distinct branches, we
significantly increase the probability of bitmap collision and
thus reduce the coverage inaccuracy.

Figure 7(a) demonstrates the impact of bitmap saturation on
fuzzing readelf. Apparently, a more saturated bitmap leads
to fewer path discoveries. Starting from an empty bitmap,
AFL identifies over 1200 paths after 10 hours of fuzzing. For
the 40% saturation rate, it only finds around 950 paths. If the
initial bitmap is highly filled, such as 80% saturation, AFL
detects only 700 paths with the same fuzzing effort.

Fuzzers with collision mitigation. Recent fuzzers, like Col-
1AFL [19], propose to mitigate the coverage collision issue
by assigning a unique identifier to each path coverage (i.e.,
branch in case of CollAFL). However, we argue that these
techniques will not effectively undermine the strength of our
BranchTrap technique on saturating coverage storage for two
reasons. First, current collision mitigation techniques require
program source code to assign unique identifiers during the
linking time optimization [19]. In our threat model, attackers
cannot obtain the program source code or the original binary —
they only have a copy of the protected binary, which makes it
significantly more challenging to apply similar [D-assignment
algorithms. Second, these fuzzers still have to adopt a fixed
size storage of coverage because of the overhead of large
storage. Therefore, if we can saturate 90% of the storage, Col-
IAFL can only utilize the remaining 10% for ID-assignment;
thus the fuzzing performance will be significantly affected.

4.3 Design Factors of BranchTrap

We provide developers an interface to configure ROP-based
BranchTrap and coverage saturation for optimal protection.
First, the number of generated fake paths of ROP-based
BranchTrap is configurable. BranchTrap depends on the num-
ber of functions to make a distorted control-flow. Therefore,
injected BranchTrap is effective when the original program
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Figure 7: (a) AFL performance with different initial bitmap satura-
tion. (b) Impact on bitmap with different number of branches.

contains plenty of functions. For binaries with fewer func-
tions, we provide an option for developers to split existing
basic blocks into multiple ones, each connected with condi-
tional branches. Second, the size of the injected branches
for saturating the coverage is also controllable. Figure 7(b)
shows how the bitmap can be saturated in AFL by increasing
the branch number. It clearly shows that more branches can
fill up more bitmap entries. For example, 100K branches can
fill up more than 90% of a bitmap entry. Injecting a massive
number of branches into the program increases the output
binary size. When we inject 100k branches, the size of the
protected binary is 4.6MB larger than the original binary. To
avoid high code size overhead, we inject a huge number of
branches into only one or two of the most rarely executed
basic blocks. As long as one fuzzed execution reaches such
branches, the coverage storage will be filled and the following
fuzzing will find fewer interesting inputs.

5 AntiHybrid: Thwarting Hybrid Fuzzers

A hybrid fuzzing method utilizes either symbolic execution
or dynamic taint analysis to improve fuzzing efficiency. Sym-
bolic (or concolic) execution is good at solving complicated
branch conditions (e.g., magic number and checksum), and
therefore can help fuzzers bypass these hard-to-mutate road-
blocks. DTA (Dynamic Taint Analysis) helps find input bytes
that are related to branch conditions. Recently, several hybrid
fuzzing methods have been proposed and successfully discov-
ered security-critical bugs. For example, Driller [57] adapted
selective symbolic execution and proved its efficacy during
the DARPA Cyber Grand Challenge (CGC). VUzzer [52]
utilized dynamic taint analysis to identify path-critical in-
put bytes for effective input mutation. QSym [67] suggested
a fast concolic execution technique that can be scalable on
real-world applications.

Nevertheless, hybrid approaches have well-known weak-
nesses. First, both symbolic execution and taint analysis
consume a large amount of resources such as CPU and mem-
ory, limiting them to analyzing simple programs. Second,
symbolic execution is limited by the path explosion problem.
If complex operation is required for processing symbols, the
symbolic execution engine has to exhaustively explore and
evaluate all execution states; then, most of the symbolic ex-

...; /% user input */
..; /% user input */

char input[]
int value

// 1. using implicit data-flow to copy input to antistr
// original code: if (!strcmp(input, "condition!")) { ... }
char antistr[strlen(input)];
for (int i = 0; i<strlen(input); i++){
int ch = 0, temp = 0, temp2 = 0;
9 for (int j = 0; j<8; j++){
10 temp = input[i];
11 temp2 = temp & (1<<j);
12 if (temp2 != 0) ch |= 1<<j;
13 }
14 antistr[i] = ch;
15 }
16 if (!strcmp(antistr, "condition!™)) { ... }
17
18 // 2. exploding path constraints
19 // original code: if (value == 12345)
20 if (CRC_LOOP(value) == OUTPUT_CRC) { ... }
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Figure 8: Example of AntiHybrid techniques. We use implicit data-
flow (line 6-15) to copy strings to hinder dynamic taint analysis. We
inject hash function around equal comparison (line 20) to cripple
symbolic execution engine.

ecution engines fail to run to the end of the execution path.
Third, DTA analysis has difficulty in tracking implicit data
dependencies, such as covert channels, control channels, or
timing-based channels. For example, to cover data depen-
dency through a control channel, the DTA engine has to
aggressively propagate the taint attribute to any variable after
a conditional branch, making the analysis more expensive and
the result less accurate.

Introducing implicit data-flow dependencies. We trans-
form the explicit data-flows in the original program into im-
plicit data-flows to hinder taint analysis. FUZZIFICATION first
identifies branch conditions and interesting information sinks
(e.g., strcmp) and then injects data-flow transformation code
according to the variable type. Figure 8 shows an example ap-
plication of AntiHybrid, where array input is used to decide
branch condition and strcmp is an interesting sink function.
Therefore, FUZZIFICATION uses implicit data-flows to copy
the array (line 6-15) and replaces the original variable to the
new one (line 16). Due to the transformed implicit data-flow,
the DTA technique cannot identify the correct input bytes that
affect the branch condition at line 16.

Implicit data-flow hinders data-flow analysis that tracks di-
rect data propagation. However, it cannot prevent data depen-
dency inference through differential analysis. For example,
recent work, RedQueen [2], infers the potential relationship
between input and branch conditions through pattern match-
ing, and thus can bypass the implicit data-flow transformation.
However, RedQueen requires the branch condition value to
be explicitly shown in the input, which can be easily fooled
through simple data modification (e.g., adding the same con-
stant value to both operands of the comparison).

Exploding path constraints. To hinder hybrid fuzzers
using symbolic execution, FUZZIFICATION injects multiple
code chunks to intentionally trigger path explosions. Specifi-



Project Version Program Arg. Seeds

Overhead (Binary size)

Overhead (CPU)

Speed BranchTrap  AntiHybrid All Speed BranchTrap AntiHybrid All

libjpeg  2017.7 djpeg GIT 9.0% (0.1IM) 101.5% (1.2M) 0.3% (0.0M) 103.2% (1.3M)  1.5% 0.9% 0.3% 2.4%
libpng 1.6.27 readpng GIT 6.2% (0.1IM)  56.0% (1.3M) 0.9% (0.0M) 65.7% (1.5M)  1.8% 2.0% 0.3% 4.0%
libtift ~ 4.0.6  tiffinfo GIT 9.2% (0.2M)  72.5% (1.5M) 0.8% (0.0M) 77.3% (1.6M)  1.0% 2.1% 0.5% 4.8%
pere2 10 pere2test built-in  12.9% (0.2M)  85.3% (1.3M) 0.8% (0.0M) 108.6% (1.7M)  1.2% 1.2% 1.0% 3.1%
readelf -a 9.6% (0.2M) 77.3% (1.3M) 0.2% (0.0M) 81.0% (1.4M) 1.0% 0.9% 0.9% 3.1%

binutils 2.23 objdump -d ELF 1.4% (0.1M)  17.0% (1.3M) 0.1% (0.0M) 17.5% (1.3M)  1.6% 2.0% 0.9% 4.6%
T nm files 1.9% (0.1M)  23.1% (1.2M) 0.1% (0.0M) 233% (1.2M) 1.8% 1.6% 1.1% 4.5%
objcopy  -S 1.7% (0.1M)  20.2% (1.3M) 0.1% (0.0M) 20.6% (1.3M)  1.7% 0.8% 0.5% 2.9%

Average 6.5% 56.6% 0.4% 62.1% 1.4% 1.4% 0.7% 3.7%

Table 2: Code size overhead and performance overhead of fuzzified binaries. GIT means Google Image Test-suite. We set performance
overhead budget as 5%. For size overhead, we show the percentage and the increased size.

cally, we replace each comparison instruction by comparing
the hash values of the original comparison operands. We
adopt the hash function because symbolic execution can-
not easily determine the original operand with the given
hash value. As hash functions usually introduce non-
negligible overhead to program execution, we utilize the
lightweight cyclic redundancy checking (CRC) loop iter-
ation to transform the branch condition to reduce perfor-
mance overhead. Although theoretically CRC is not as
strong as hash functions for hindering symbolic execution,
it also introduces significant slow down. Figure 8 shows
an example of the path explosion instrumentation. To be
specific, FUZZIFICATION changes the original condition
(value == 12345) to (CRC_LOOP(value) == OUTPUT_CRC)
(at line 20). If symbolic execution decides to solve the con-
straint of the CRC, it will mostly return a timeout error due to
the complicated mathematics. For example, QSym, a state-of-
the-art fast symbolic execution engine, is armed with many
heuristics to scale on real-world applications. When QSym
first tries to solve the complicated constraint that we injected,
it will fail due to the timeout or path explosion. Once injected
codes are run by the fuzzer multiple times, QSym identifies
the repetitive basic blocks (i.e., injected hash function) and
performs basic block pruning, which decides not to generate
a further constraint from it to assign resources into a new
constraint. After that, QSym will not explore the condition
with the injected hash function; thus, the code in the branch
can be explored rarely.

6 Evaluation

We evaluate our FUZZIFICATION techniques to understand
their effectiveness on hindering fuzzers from exploring pro-
gram code paths (§6.1) and detecting bugs (§6.2), their practi-
cality of protecting real-world large programs (§6.3), and their
robustness against adversarial analysis techniques (§6.4).

Implementation. Our FUZZIFICATION framework is imple-
mented in a total of 6,559 lines of Python code and 758 lines
of C++ code. We implement the SpeedBump technique as an

Tasks Target AFL HonggFuzz QSym VUzzer
Coverage 8 binaries O,S.B.H,A O,S.BHA O,SBHA -
8 MuPDF 0.A 0.A 0,A -
Crash 4 binaries O,A O,A 0O,A -
LAVA-M O,A 0,A 0,A 0,A

Table 3: Experiments summary. Protection options: Original,
SpeedBump, BranchTrap, AntiHybrid, All. We use 4 binutils bina-
ries, 4 binaries from Google OSS project and MuPDF to measure the
code coverage. We use binutils binaries and LAVA-M programs to
measure the number of unique crashes.

LLVM pass and use it to inject delays into cold blocks during
the compilation. For the BranchTrap, we analyze the assem-
bly code and modify it directly. For the AntiHybrid technique,
we use an LLVM pass to introduce the path explosion and uti-
lize a python script to automatically inject implicit data-flows.
Currently, our system supports all three FUZZIFICATION tech-
niques on 64bit applications, and is able to protect 32bit ap-
plications except for the ROP-based BranchTrap.

Experimental setup. We evaluate FUZZIFICATION against
four state-of-the-art fuzzers that work on binaries, specifi-
cally, AFL in QEMU mode, HonggFuzz in Intel-PT mode,
VUzzer 32!, and QSym with AFL-QEMU. We set up the
evaluation on two machines, one with Intel Xeon CPU E7-
8890 v4@2.20GHz, 192 processors and 504 GB of RAM,
and another with Intel Xeon CPU E7-4820@2.00GHz, 32
processors and 128 GB of RAM.

To get reproducible results, we tried to eliminate the non-
deterministic factors from fuzzers: we disable the address
space layout randomization of the experiment machine and
force the deterministic mode for AFL. However, we have to
leave the randomness in HonggFuzz and VUzzer, as they do
not support deterministic fuzzing. Second, we used the same
set of test cases for basic block profiling in FUZZIFICATION,
and fed the same seed inputs for different fuzzers. Third,

'We also tried to use VUzzer64 to fuzz different programs, but it did not
find any crashes even for any original binary after three-day fuzzing. Since
VUzzer64 is still experimental, we will try the stable version in the future.
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Figure 9: Paths discovered by AFL-QEMU from real-world programs. Each program is compiled with five settings: original (no protection),
SpeedBump, BranchTrap, AntiHybrid, and all protections. We fuzz them with AFL-QEMU for three days.

Category Option Design Choice
max_overhead 2%
delay_length 10ms to 300ms
SpeedBump include_invalid True
include_non_exec True (5%)
BranchTra max_overhead 2%
P bitmap_saturation 40% of 64k bitmap
. . max_overhead 1%
AntiHybrid include_non_exec True (5%)
Overall max_overhead 5%

Table 4: Our configuration values for the evaluation.

we used identical FUZZIFICATION techniques and configura-
tions when we conducted code instrumentation and binary
rewriting for each target application. Last, we pre-generated
FUZZIFICATION primitives (e.g., SpeedBump codes for 10ms
to 300ms and BranchTrap codes with deterministic branches),
and used the primitives for all protections. Note that devel-
opers should use different primitives for the actual releasing
binary to avoid code pattern matching analysis.

Target applications. We select the LAVA-M data set [17]
and nine real-world applications as the fuzzing targets,
which are commonly used to evaluate the performance of
fuzzers [11, 19, 64, 52]. The nine real-world programs in-
clude four applications from the Google fuzzer test-suite [24],
four programs from the binutils [20] (shown in Table 2), and
the PDF reader MuPDF. We perform two sets of experiments on
these binaries, summarized in Table 3. First, we fuzz nine real-
world programs with three fuzzers (all except VUzzer?) to
measure the impact of FUZZIFICATION on finding code paths.
Specifically, we compile eight real-world programs (all except
MuPDF) with five different settings: original (no protection),

2Due to time limit, we only use VUzzer 32 to finding bugs from LAVA-M
programs. We plan to do other evaluations in the future.

SpeedBump, BranchTrap, AntiHybrid, and a combination of
three techniques (full protection). We compile MuPDF with
two settings for simplicity: no protection and full protection.
Second, we use three fuzzers to fuzz four binutils programs
and all four fuzzers to fuzz LAVA-M programs to evaluate the
impact of FUZZIFICATION on unique bug finding. All fuzzed
programs in this step are compiled in two versions: with no
protection and with full protection. We compiled the LAVA-
M program to a 32bit version in order to be comparable with
previous research. Table 4 shows the configuration of each
technique used in our compilation. We changed the fuzzer’s
timeout if the binaries cannot start with the default timeout
(e.g., 1000 ms for AFL-QEMU).

Evaluation metric. We use two metrics to measure the
effectiveness of FUZZIFICATION: code coverage in terms of
discovered real paths, and unique crashes. Real path is the
execution path shown in the original program, excluding the
fake ones introduced by BranchTrap. We further excluded
the real paths triggered by seed inputs so that we can focus
on the ones discovered by fuzzers. Unique crash is measured
as the input that can make the program crash with a distinct
real path. We filter out duplicate crashes that are defined in
AFL [71] and are widely used by other fuzzers [11, 36].

6.1 Reducing Code Coverage
6.1.1 Impact on Normal Fuzzers

We measure the impact of FUZZIFICATION on reducing the
number of real paths against AFL-QEMU and HonggFuzz-
Intel-PT. Figure 9 shows the 72-hour fuzzing result from AFL-
QEMU on different programs with five protection settings.
The result of HonggFuzz-Intel-PT is similar and we leave it
in Appendix A.

In summary, with all three techniques, FUZZIFICATION
can reduce discovered real paths by 76% to AFL, and by



SpeedBump BranchTrap AntiHybrid All

AFL-QEMU -66% -23% -18% -74%
HonggFuzz (PT) -44% -14% -7% -61%
QSym (AFL-QEMU) -59% -58% -67% -80%
Average -56% -31% -30% -71%

Table 5: Reduction of discovered paths by FUZZIFICATION tech-
niques. Each value is an average of the fuzzing result from eight
real-world programs, as shown in Figure 9 and Figure 10.

67% to HonggFuzz, on average. For AFL, the reduction
rate varies from 14% to 97% and FUZZIFICATION reduces
over 90% of path discovery for 1ibtiff, pcre2 and readelf.
For HonggFuzz, the reduction rate is between 38% to 90%
and FUZZIFICATION only reduces more than 90% of paths
for pcre2. As FUZZIFICATION automatically determines the
details for each protection to satisfy the overhead budget, its
effect varies for different programs.

Table 5 shows the effect of each technique on hindering
path discovery. Among them, SpeedBump achieves the best
protection against normal fuzzers, followed by BranchTrap
and AntiHybrid. Interestingly, although AntiHybrid is devel-
oped to hinder hybrid approaches, it also helps reduce the
discovered paths in normal fuzzers. We believe this is mainly
caused by the slow down in fuzzed executions.

We measured the overhead by different FUZZIFICATION
techniques, on program size and execution speed. The re-
sult is given in Table 2. In summary, FUZZIFICATION sat-
isfies the user-specified overhead budget, but shows rela-
tively high space overhead. On average, binaries armed with
FUZZIFICATION are 62.1% larger than the original ones. The
extra code mainly comes from the BranchTrap technique,
which inserts massive branches to achieve bitmap saturation.
Note that the extra code size is almost the same across dif-
ferent programs. Therefore, the size overhead is high for
small programs, but is negligible for large applications. For
example, the size overhead is less than 1% for LibreOffice
applications, as we show in Table 7. Further, BranchTrap is
configurable, and developers may inject a smaller number of
fake branches to small programs to avoid large-size overhead.

Analysis on less effective results. FUZZIFICATION shows
less effectiveness on protecting the libjpeg application.
Specifically, it decreases the number of real paths on libjpeg
by 13% to AFL and by 37% to HonggFuzz, whereas the av-
erage reduction is 76% and 67%, respectively. We analyzed
FUZZIFICATION on libjpeg and find that SpeedBump and
BranchTrap cannot effectively protect libjpeg. Specifically,
these two techniques only inject nine basic blocks within
the user-specified overhead budget (2% for SpeedBump and
2% for BranchTrap), which is less than 0.1% of all basic
blocks. To address this problem, developers may increase
the overhead budget so that FUZZIFICATION can insert more
roadblocks to protect the program.

6.1.2 Impact on Hybrid Fuzzers

We also evaluated FUZZIFICATION’s impact on code cov-
erage against QSym, a hybrid fuzzer that utilizes symbolic
execution to help fuzzing. Figure 10 shows the number of real
paths discovered by QSym from the original and protected
binaries. Overall, with all three techniques, FUZZIFICATION
can reduce the path coverage by 80% to QSym on average,
and shows consistent high effectiveness on all tested pro-
grams. Specifically, the reduction rate varies between 66%
(objdump) to 90% (readelf). The result of libjpeg shows an
interesting pattern: QSym finds a large number of real paths
from the original binary in the last 8 hours, but it did not get
the same result from any protected binary. Table 5 shows
that AntiHybrid achieves the best effect (67% path reduction)
against hybrid fuzzers, followed by SpeedBump (59%) and
BranchTrap (58%).

Comparison with normal fuzzing result. QSym uses effi-
cient symbolic execution to help find new paths in fuzzing,
and therefore it is able to discover 44% more real paths than
AFL from original binaries. As we expect, AntiHybrid shows
the most impact on QSym (67% reduction), and less effect on
AFL (18%) and HonggFuzz (7%). With our FUZZIFICATION
techniques, QSym shows less advantage over normal fuzzers,
reduced from 44% to 12%.

6.2 Hindering Bug Finding

We measure the number of unique crashes that fuzzers find
from the original and protected binaries. Our evaluation first
fuzzes four binutils programs and LAVA-M applications with
three fuzzers (all but VUzzer). Then we fuzz LAVA-M pro-
grams with VUzzer, where we compiled them into 32bit ver-
sions and excluded the protection of ROP-based BranchTrap,
which is not implemented yet for 32bit programs.

6.2.1 Impact on Real-World Applications

Figure 11 shows the total number of unique crashes discov-
ered by three fuzzers in 72 hours. Overall, FUZZIFICATION
reduces the number of discovered crashes by 93%, specifi-
cally, by 88% to AFL, by 98% to HonggFuzz, and by 94% to
QSym. If we assume a consistent crash-discovery rate along
the fuzzing process, fuzzers have to take 40 times more ef-
fort to detect the same number of crashes from the protected
binaries. As the crash-discovery rate usually reduces over
time in real-world fuzzing, fuzzers will have to take much
more effort. Therefore, FUZZIFICATION can effectively hin-
der fuzzers and makes them spend significantly more time
discovering the same number of crash-inducing inputs.

6.2.2 Impact on LAVA-M Dataset

Compared with other tested binaries, LAVA-M programs
are smaller in size and simpler in operation. If we inject a



who uniq base64 mdSsum Average
Overhead (Sizey  [71%  2206%  2200%  210.7%  167.1%
v ) 03M)  (03M)  (0.3M)  (0.3M)

Overhead (CPU)  22.7% 132%  21.1% 6.5% 15.9%

Table 6: Overhead of FUZZIFICATION on LAVA-M binaries (all
protections except ROP-based BranchTrap) . The overhead is higher
as LAVA-M binaries are relatively small (e.g., =~ 200KB).

. Overhead
Category Program Version Size CPU
Writer <1% (+1.3MB) 0.4%
LibreOffice Calc 6.2 <1% (+1.3MB) 04%
Impress <1% (+1.3MB) 0.2%

Music Player Clementine 1.3 43% (+1.3MB) 0.5%

PDF Reader MuPDF 1.13 4.1% (+1.3MB) 22%
Image Viewer Nomacs 3.10 21% (+1.2MB) 0.7%
Average 5.4% 0.73%

Table 7: FuzzIiFICATION on GUI applications. The CPU over-
head is calculated on the application launching time. Due to the
fixed code injection, code size overhead is negligible for these large
applications.

Ims delay on 1% of rarely executed basic block on who bi-
nary, the program will suffer a slow down of more than 40
times. To apply FUZZIFICATION on the LAVA-M dataset, we
allow higher overhead budget and apply more fine-grained
FuzzIFICATION. Specifically, we used tiny delay primitives
(i.e., 10 us to 100 ps), tuned the ratio of basic block instru-
mentation from 1% to 0.1%, reduced the number of applied
AntiHybrid components, and injected smaller deterministic
branches to reduce the code size overhead. Table 6 shows
the run-time and space overhead of the generated LAVA-M
programs with FUZZIFICATION techniques.

After fuzzing the protected binaries for 10 hours, AFL-
QEMU does not find any crash. HonggFuzz detects three
crashes from the original uniq binary and cannot find
any crash from any protected binary. Figure 12 illus-
trates the fuzzing result of VUzzer and QSym. Overall,
FUZZIFICATION can reduce 56% of discovered bugs to
VUzzer and 78% of discovered bugs to QSym. Note that
the fuzzing result on the original binaries is different from the
ones reported in the original papers [67, 52] for several rea-
sons: VUzzer and QSym cannot eliminate non-deterministic
steps during fuzzing; we run the AFL part of each tool in
QEMU mode; LAVA-M dataset is updated with several bug
fixes®.

6.3 Anti-fuzzing on Realistic Applications

To understand the practicality of FUZZIFICATION on large
and realistic applications, we choose six programs that have a

3https://github.com/panda-re/lava/search?q=bugfix &type=Commits

Pattern Control Data Manual

matching analysis analysis analysis
SpeedBump v (4 v -
BranchTrap v v v -
AntiHybrid - v v -

Table 8: Defense against adversarial analysis. ¢ indicates that the
FUZZIFICATION technique is resistant to that adversarial analysis.

graphical user interface (GUI) and depend on tens of libraries.
As fuzzing large and GUI programs is a well-known challeng-
ing problem, our evaluation here focuses on measuring the
overhead of FUZZIFICATION techniques and the functionality
of protected programs. When applying the SpeedBump tech-
nique, we have to skip the basic block profiling step due to the
lack of command-line interface (CLI) support (e.g., readelf
parses ELF file and displays results in command line); thus,
we only insert slow down primitives into error-handling rou-
tines. For the BranchTrap technique, we choose to inject
massive fake branches into basic blocks near the entry point.
In this way, the program execution will always pass the in-
jected component so that we can measure runtime overhead
correctly. We apply the AntiHybrid technique directly.

For each protected application, we first manually run it
with multiple inputs, including given test cases, and confirm
that FUZZIFICATION does not affect the program’s original
functionality. For example, MuPDF successfully displays, ed-
its, saves, and prints all tested PDF documents. Second, we
measure the code size and runtime overhead of the protected
binaries for given test cases. As shown in Table 7, on av-
erage, FUZZIFICATION introduces 5.4% code size overhead
and 0.73% runtime overhead. Note that the code size over-
head is much smaller than that of previous programs (i.e.,
62.1% for eight relatively small programs Table 2 and over
100% size overhead for simple LAVA-M programs Table 6).

Anti-fuzzing on MuPDF. We also evaluated the effective-
ness of FUZZIFICATION on protecting MuPDF against three
fuzzers — AFL, HonggFuzz, and QSym— as MuPDF supports
the CLI interface through the tool called “mutool.” We com-
piled the binary with the same parameter shown in Table 4
and performed basic block profiling using the CLI interface.
After 72-hours of fuzzing, no fuzzer finds any bug from MuPDF.
Therefore, we instead compare the number of real paths be-
tween the original binary and the protected one. As shown in
Figure 13, FUZZIFICATION reduces the total paths by 55% on
average, specifically, by 77% to AFL, by 36% to HonggFuzz,
and 52% to QSym. Therefore, we believe it is more chal-
lenging for real-world fuzzers to find bugs from protected
applications.

6.4 Evaluating Best-effort Countermeasures

We evaluate the robustness of FUZZIFICATION techniques
against off-the-shelf program analysis techniques that adver-



g0k () AFL-QEMU (b) HonggFuzz (PT)  (c) QSym (AFL-QEMU)

=N
=]
=~

A S e e .
' - B -

Original - -a=.=
uzzified (All) ---ot---

209030963 0030 K003 063 X 98 X WK

# real paths
e
=]
=

5]
=]
=

L2 R < 4
xonxwxponrpexd® ) Lo

12 24 36 48 60 72 12 24 36 48 60 72
Time (hours) Time (hours)

Figure 13: Paths discovered by different fuzzers from the original
MuPDF and the one protected by three FUZZIFICATION techniques.
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saries may use to reverse our protections. However, the experi-
ment results do not particularly indicate that FUZZIFICATION
is robust against strong adversaries with incomparable com-
putational resources.

Table 8 shows the analysis we covered and summarizes
the evaluation result. First, attackers may search particular
code patterns from the protected binary in order to identify
injected protection code. To test anti-fuzzing against pattern
matching, we examine a number of code snippets that are
repeatedly used throughout the protected binaries. We found
that the injected code by AntiHybrid crafts several observable
patterns, like hash algorithms or data-flow reconstruction
code, and thus could be detected by attackers. One possible
solution to this problem is to use existing diversity techniques
to eliminate the common patterns [35]. We confirm that no
specific patterns can be found in SpeedBump and BranchTrap
because we leverage CSmith [66] to randomly generate a new
code snippet for each FUZZIFICATION process.

Second, control-flow analysis can identify unused code in
a given binary automatically and thus automatically remove it
(i.e., dead code elimination). However, this technique cannot
remove our FUZZIFICATION techniques, as all injected code
is cross-referenced with the original code. Third, data-flow
analysis is able to identify the data dependency. We run pro-
tected binaries inside the debugging tool, GDB, to inspect
data dependencies between the injected code and the original
code. We confirm that data dependencies always exist via
global variables, arguments, and the return values of injected
functions. Finally, we consider an adversary who is capable
of conducting manual analysis for identifying the anti-fuzzing
code with the knowledge of our techniques. It is worth noting
that we do not consider strong adversaries who are capable
of analyzing the application logic for vulnerability discovery.
Since FUZZIFICATION injected codes are supplemental to
the original functions, we conclude that the manual analysis
can eventually identify and nullify our techniques by evaluat-
ing the actual functionality of the code. However, since the
injected code is functionally similar to normal arithmetic oper-
ations and has control- and data-dependencies on the original
code, we believe that the manual analysis is time-consuming
and error-prone, and thus we can deter the time for revealing
real bugs.

7 Discussion and Future Work

In this section, we discuss the limitations of FUZZIFICATION
and suggest provisional countermeasures against them.

Complementing attack mitigation system. The goal of
anti-fuzzing is not to completely hide all vulnerabilities from
adversaries. Instead, it introduces an expensive cost on the
attackers’ side when they try to fuzz the program to find
bugs, and thus developers are able to detect bugs first and
fix them in a timely manner. Therefore, we believe our anti-
fuzzing technique is an important complement to the current
attack mitigation ecosystem. Existing mitigation efforts ei-
ther aim to avoid program bugs (e.g., through type-safe lan-
guage [32, 44]) or aim to prevent successful exploits, assum-
ing attackers will find bugs anyway (e.g., through control-flow
integrity [1, 16, 30]). As none of these defenses can achieve
100% protection, our FUZZIFICATION techniques provide an-
other level of defense that further enhances program security.
However, we emphasize that FUZZIFICATION alone cannot
provide the best security. Instead, we should keep working
on all aspects of system security toward a completely secure
computer system, including but not limited to secure devel-
opment process, effective bug finding, and efficient runtime
defense.

Best-effort protection against adversarial analysis. Al-
though we examined existing generic analyses and believe
they cannot completely disarm our FUZZIFICATION tech-
niques, the defensive methods only provide a best-effort pro-
tection. First, if attackers have almost unlimited resources,
such as when they launch APT (advanced persistent threat) at-
tacks, no defense mechanism can survive the powerful adver-
sarial analysis. For example, with extremely powerful binary-
level control-flow analysis and data-flow analysis, attackers
may finally identify the injected branches by BranchTrap and
thus reverse it for an unprotected binary. However, it is hard
to measure the amount of required resources to achieve this
goal, and meanwhile, developers can choose more compli-
cated branch logic to mitigate reversing. Second, we only
examined currently existing techniques and cannot cover all
possible analyses. It is possible that attackers who know
the details of our FUZZIFICATION techniques propose a spe-
cific method to effectively bypass the protection, such as by
utilizing our implementation bugs. But in this case, the anti-
fuzzing technique will also get updated quickly to block the
specific attack once we know the reversing technique. There-
fore, we believe the anti-fuzzing technique will get improved
continuously along the back-and-forth attack and defense
progress.

Trade-off performance for security. FUZZIFICATION im-
proves software security at the cost of a slight overhead, in-
cluding code size increase and execution slow down. A sim-
ilar trade-off has been shown in many defense mechanisms
and affects the deployment of defense mechanisms. For ex-
ample, address space layout randomization (ASLR) has been



widely adopted by modern operating systems due to small
overhead, while memory safety solutions still have a long
way to go to become practical. Fortunately, the protection by
FUZzZIFICATION is quite flexible, where we provide various
configuration options for developers to decide the optimal
trade-off between security and performance, and our tool will
automatically determine the maximum protection under the
overhead budget.

Delay primitive on different H/W environments. We
adopt CSmith-generated code as our delay primitives using
measured delay on one machine (i.e., developer’s machine).
This configuration implies that those injected delays might
not be able to bring the expected slow down to the fuzzed
execution with more powerful hardware support. On the other
hand, the delay primitives can cause higher overhead than
expected for regular users with less powerful devices. To han-
dle this, we plan to develop an additional variation that can
dynamically adjust the delay primitives at runtime. Specif-
ically, we measure the CPU performance by monitoring a
few instructions and automatically adjusting a loop counter in
the delay primitives to realize the accurate delay in different
hardware environments. However, the code may expose static
pattern such as time measurement system call or a special
instruction like rdtsc; thus we note that this variation has
inevitable trade-off between adaptability and robustness.

8 Related Work

Fuzzing. Since the first proposal by Barton Miller in 1990
[40], fuzzing has evolved into a standard method for auto-
matic program testing and bug finding. Various fuzzing tech-
niques and tools have been proposed [57, 52, 29, 21, 34], de-
veloped [72, 37, 25, 23, 18, 9], and used to find a large number
of program bugs [51, 72, 59, 26, 10]. There are continuous ef-
forts to help improve fuzzing efficiency by developing a more
effective feedback loop [6], proposing new OS primitives [64],
and utilizing clusters for large-scale fuzzing [22, 24, 39].
Recently, researchers have been using fuzzing as a gen-
eral way to explore program paths with specialties, such
as maximizing CPU usage [49], reaching a particular code
location [5], and verifying the deep learning result empiri-
cally [47]. All these works result in a significant improve-
ment to software security and reliability. In this paper, we
focus on the opposite side of the double-edged sword, where
attackers abuse fuzzing techniques to find zero-day vulnera-
bilities and thus launch a sophisticated cyber attack. We build
effective methods to hinder attackers on bug finding using
FUZZIFICATION, which can provide developers and trusted
researchers time to defeat the adversarial fuzzing effort.

Anti-fuzzing techniques. A few studies briefly discuss
the concept of anti-fuzzing [63, 27, 41, 31]. Among them,
Goransson et al. evaluated two straightforward techniques,
i.e., crash masking to prevent fuzzers finding crashes and

fuzzer detection to hide functionality when being fuzzed [27].
However, attackers can easily detect these methods and by-
pass them for effective fuzzing. Our system provides a fine-
grained controllable method to slow the fuzzed execution and
introduces effective ways to manipulate the feedback loop
to fool fuzzers. We also consider defensive mechanisms to
prevent attackers from removing our anti-fuzzing techniques.

Hu et al. proposed to hinder attacks by injecting prov-
ably (but not obviously) non-exploitable bugs to the program,
called “Chaff Bugs” [31]. These bugs will confuse bug anal-
ysis tools and waste attackers’ effort on exploit generation.
Both chaff bugs and FUZZIFICATION techniques work on
close-source programs. Differently, our techniques hinder
bug finding in the first place, eliminating the chance for an
attacker to analyze bugs or construct exploits. Further, both
techniques may affect normal-but-rare usage of the program.
However, our methods, at most, introduce slow down to the
execution, while improper chaff bugs lead to crashes, thus
harming the usability.

Anti-analysis techniques. Anti-symbolic-execution and
anti-taint-analysis are well-known topics. Sharif et al. [56]
designed a conditional code obfuscation that encrypts a condi-
tional branch with cryptographic operations. Wang et al. [62]
proposed a method to harden the binary from symbolic ex-
ecution by using linear operations instead of cryptographic
functions. However, neither of them considered performance
overhead as an evaluation metric. SymPro [7] presented sym-
bolic profiling, a method to identify and diagnose bottlenecks
of the application under symbolic execution. Cavallaro et
al. [8] showed a comprehensive collection of evading tech-
niques on dynamic-taint-analysis.

Software obfuscation and diversity. Software obfuscation
transforms the program code into obscure formats that are
difficult to analyze so as to prevent unexpected reverse en-
gineering [12, 13]. Various tools have been developed to
obfuscate binaries [15, 60, 33, 46]. However, obfuscation
is not effective to impede unexpected fuzzing because it fo-
cuses on evading static analysis and the original program
logic is still revealed at runtime. Software diversity instead
provides different implementations of the same program for
different execution environments, aiming to either limit at-
tacks on a specific version (usually a small set of all distri-
butions), or significantly increase the effort to build generic
exploits [35, 3, 53, 50]. Fuzzing one of many diversified ver-
sions could be less effective if the identified bug is specific to
one version (which is likely caused by an implementation er-
ror of the diversity mechanism). However, for bugs stemming
from a programming mistake, diversity cannot help hinder
attackers finding them.



9 Conclusion

We propose a new attack mitigation system, called
FuzziricATION, for developers to prevent adversarial
fuzzing. We develop three principled ways to hinder fuzzing:
injecting delays to slow fuzzed executions; inserting fabri-
cated branches to confuse coverage feedback; transforming
data-flows to prevent taint analysis and utilizing complicated
constraints to cripple symbolic execution. We design robust
anti-fuzzing primitives to hinder attackers from bypassing
FUZZIFICATION. Our evaluation shows that FUZZIFICATION
can reduce paths exploration by 70.3% and reduce bug dis-
covery by 93.0% for real-world binaries, and reduce bug
discovery by 67.5% for LAVA-M dataset.
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A HonggFuzz Intel-PT-mode Result
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Figure 14: Paths discovered by HonggFuzz Intel-PT mode from
real-world programs. Each program is compiled with five settings:
original (no protection), SpeedBump, BranchTrap, AntiHybrid and
all protections. We fuzz them for three days.
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Figure 10: Paths discovered by QSym from real-world programs. Each program is compiled with the same five settings as in Figure 9. We
fuzz these programs for three days, using QSym as the symbolic execution engine and AFL-QEMU as the native fuzzer.
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Figure 11: Crashes found by different fuzzers from binutils programs. Each
program is compiled as original (no protection) and fuzzified (three techniques)
and is fuzzed for three days.

(a) VUzzer (b) QSym (AFL-QEMU)
60 I I 1 I 150 I 1 I
50 120 Original Ex3
40 Fuzz1ﬁed EITCON
90
30
0 60
10 {j 30 5
0 @3 = ) oi 0 I |a 3
. o 3\3“\ o
& @ = (P & @ *&"e o

Figure 12: Bugs found by VUzzer and QSym from
LAVA-M dataset. HonggFuzz discovers three bugs from
the original uniq. AFL does not find any bug.
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