Toward Generating Reducible Replay Logs

Kyu Hyung Lee

Yunhui Zheng

Nick Sumner  Xiangyu Zhang

Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
{kyuhlee,zheng16,wnsumner,xyzhang}@cs.purdue.edu

Abstract

Logging and replay is important to reproducing software failures
and recovering from failures. Replaying a long execution is time
consuming, especially when replay is further integrated with run-
time techniques that require expensive instrumentation, such as de-
pendence detection. In this paper, we propose a technique to re-
duce a replay log while retaining its ability to reproduce a failure.
While traditional logging records only system calls and signals, our
technique leverages the compiler to selectively collect additional
information on the fly. Upon a failure, the log can be reduced by
analyzing itself. The collection is highly optimized. The additional
runtime overhead of our technique, compared to a plain logging
tool, is trivial (2.61% average) and the size of additional log is
comparable to the original log. Substantial reduction can be cost-
effectively achieved through a search based algorithm. The reduced
log is guaranteed to reproduce the failure.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Debugging aids, Tracing

General Terms Reliability, Performance

Keywords  Software reliability, Log reduction, debugging, replay,
instrumentation

1. Introduction

Logging and replay is an important technique for software depend-
ability [6, 11, 20]. It records the interactions between a program and
its environment during execution by logging system calls and sig-
nals. The execution can be replayed as many times as necessary for
various purposes, such as diagnosis of software failures and state
recovery from failures. The state of the art logging techniques have
low overhead, usually less than 10% [6, 18], support concurrent
programs [1, 5, 16], and are even provided as part of the operating
system. These features make the techniques highly desirable when
intensive on-the-fly human attention is infeasible during execution,
such as in the emerging cloud computing scenario.

For long running programs such as server programs and user in-
teractive (UI) programs, replay logs may correspond to executions
as long as a few hours or even days. Large logs entail long replay
times. The programmer may have to wait for hours before a fail-
ure is reproduced. Sending such large log files over network could
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also be problematic. Checkpoints [4] are often created to mitigate
the problem. However, as checkpointing often entails taking snap-
shots of the entire address space of the application, its frequent use
cannot be afforded. We aim to develop a practical technique that
reduces an execution by reducing its replay log. Given a reduction
criterion, such as a program failure, the technique removes events
from the log in a way that the reduced log can still properly drive
the execution to the criterion. Such a technique is particularly desir-
able when replay is integrated with debugging techniques that re-
quire expensive instrumentation easily causing an order of magni-
tude slow down [25]. There are also iterative debugging techniques
that require repeated replay [24]. In such a context, even a log for
a few minutes of execution is hardly affordable. Furthermore, if a
failure occurs in remote execution, the large replay log can be re-
duced on the remote site before it is sent back to the developer.

Challenges of Replayable Log Reduction.

During replay, events from the log are retrieved in order to drive
the execution. The first challenge is that reduction may induce
a different control flow path such that the reduced log cannot
properly align with the replayed execution. An event in the reduced
log may no longer be encountered during replay due to the different
path. Or, replay may take a new path such that an event is expected
but not present in the log.

The second challenge is that reduction may change variable val-
ues, leading to inconsistency. For example, it may change the num-
ber of bytes that are supposed to be read at a system call. That is, the
log indicates x bytes were read but the replayed execution expects
X+ c bytes. Solving such inconsistency demands substantial effort.
Existing work tries to achieve replayable reduction by retaining the
events that are in the transitive closure of dependences for the cri-
terion [19, 25]. However, it demands replaying the full execution
at least once to detect dependences. Tracking all instruction level
dependences often incurs 5-10 times slow down [19]. Since reduc-
tion is mainly needed for long executions, the resulting cost could
be very high. Furthermore, we observe that for complex programs,
dependences between events are so pervasive that the transitive clo-
sure may involve all events, so reduction can hardly be achieved.

: Figure 1. Struc-
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Dependences are not the only factor needing consideration in
reduction. Events independent to the reduction criteria may need
to be included due to structural constraints. Specifically, an event
is needed if the control flow structure demands its presence even



1 int adult=0, count=0; 3 [UNIT Uty
2 Node * list=null; 3 | R(Amy, 6)
3 [UNIT] while (read( 10| y(count,1); Umy
&name, &age)) { 10| (count); Usrian
4 if(age>18) { 3 |UNIT
5 adult++; 3 |R(Brian, 5) 3 | R(Tom,21) ' Uamy
6 n=new Node(name); 3 [R(Amy, 6) 5 | y(adult,0); lis
7 n—next=list; 3 |R(Tom, 21) 5 o(adult); Urom
8 list=n; 9 | W(Tom) 7 | y(list); Urom
9 rint(name); 3 |R(John, 15) 8 | w(list); -
print( ) 3 |R(Betty, 30) o | W(Tom) st Ujonn Flg}lre 2. An example of our
10 count++; 9 | W(Betty) 10| y(count,2); design. Events not shaded in
} 3 |R(EOF) 10| o(count); Useay (c) are those generated by our
11 print(“count="+count); 11| W(count=5) 3 |UNIT 1[( technique. () and () are
12 assert(list—next==null); 12| Assertion Fails U U memory accesses. For read-
12| Assertion Fails Exit Exit ability, we use the name be-
. . ing read in the iteration as the
(a) Annotated Program (b) Original log (c) Enhanced log (d) Unit deps subscript of a unit.

though there is no (transitive) dependence between the criterion
and the event. This is the third challenge.

Consider the example in Fig. 1. Ideally, if we want to replay the
output of z at 6, we only need to replay the read at 5. However,
none of the events can be reduced because all of them are expected
during replay due to the straight line structure.

Our Design. Our goal is to address the above challenges and
develop a practical log reduction technique. The basic idea of this
paper is to selectively record extra information such that reduction
can be achieved by analyzing the log. The approach is efficient: it
introduces negligible overhead; the additional information needed
to be logged is typically not substantial compared to the original
log size. It is effective in achieving reduction.

In particular, our technique divides an execution into units such
that reduction is only carried out at the unit level. In this paper,
a unit is an iteration of an event processing loop. For a program
driven by external events, its execution is dominated by these iter-
ations. To distinguish the term event from that used in a replay log,
we call external events requests, and an event loop is hence called a
request handling loop. There are many log entries generated inside
a unit. They are either reduced entirely or retained for awhile. Such
a design allows us easily handle structural constraints. Moreover,
there are few dependences crossing unit boundaries because a unit
is often supposed to carry out a relatively independent task.

On the other hand, units are not completely independent, so re-
playing individual units is seldom possible. For example, in the
apache server program, a unit receives a request from a user,
pushes the request to a queue, and then terminates. Another unit
pops the request, establishes the connection, and handles the re-
quest. It is easy to tell that replaying either unit alone will not suc-
ceed. Hence, we need to detect inter-unit dependences. We observe
that considering all dependences likely makes the log irreducible
as all units are inter-dependent in some way. We propose weaving
two kinds of replay. For variables or data structure fields of primi-
tive types, their values are restored at unit boundaries so that we can
avoid replaying their dependences. For variables of pointer types or
other complex types, we replay their dependences (the units where
the variables were defined) because directly restoring their values
is either too expensive or problematic. Our compile time analysis
instruments the program to collect sufficient runtime information
to support such replay. Reduction is done offline by analyzing the
enhanced log. Driven by the reduced log, the replay ensures two
properties: (1) the replay control flow must be identical to the cor-
responding part of the original execution; (2) variables must have

identical values at identical control flow points. These properties
promise the reproduction of the criterion.

Overview Example. Consider the example in Fig. 2 (a). The pro-
gram reads personal information and stores the adult information to
a linked list. At the end, it asserts the linked list has precisely one
element. The user annotates the main request handling loop using
keyword “[UNIT]”, meaning each iteration of the loop is consid-
ered a unit. Figure (b) shows the original replay log of an example
execution in which the information for two adults is provided. Calls
to read () and print () are logged as input/output events.

The data structures that may cause inter-unit dependences are
then identified. They are adult, count, and 1ist. The state-
ments relevant to these variables are instrumented. Part of the en-
hanced log is presented in Fig. 2 (c). In particular, UNIT events
delimit execution units. Reads and writes of the relevant data struc-
tures are logged. As count and adult have primitive types, their
reads are logged with values. In comparison, the reads of 1ist
are logged without the pointer values. In Figure (d), the inter-unit
dependences regarding variable 11ist are presented. Each node de-
notes a unit. The variable causing a dependence is labeled on the de-
pendence edge. Note that non-pointer dependences are usually not
considered. In order to replay the assertion failure, unit U,,;; needs
to be replayed. Transitively, Uperry, Urom and Uepyry are included
in the reduced log due to the pointer dependences. Replaying the
four events faithfully reconstructs the linked list. When replaying
a unit, the values of count and adult are retrieved from the log
instead of being recomputed. Note that count causes inter-unit
dependences between each pair of consecutive units. Hence, if we
consider its dependences, we have to replay all units.

The contributions of the paper are highlighted as follows.

e We propose a novel logging technique that generates reducible
logs. It selectively logs memory access information with very
little runtime overhead. Reduction is achieved by analyzing the
log. In particular, we consider unit level reduction so that less
runtime information needs to be logged. We consider primitive
and pointer variables separately, which allows us to reach a
balance in the logging overhead and the achievable reduction.

We formally introduce the logging semantics, the replay seman-
tics and the reduction algorithm. The logging semantics is de-
signed such that it avoids redundancy. We develop an aggressive
reduction algorithm that saves us from reconstructing the whole
memory state while still reproducing the criterion (failure).



e We prove that our reduction scheme can faithfully reproduce
the criterion.

e We evaluate our technique on a set of real world programs.
Results show the runtime overhead is 2.6% on average and
the additional space consumption is comparable to traditional
techniques. We can reduce executions with tens of thousands of
units to just a few units, and still reproduce the bugs.

2. Language

KERNEL-LANGUAGE L

PeL = s
x e Var {x1, x2, ...}
c€Const == {true, false,.., —1,0, 1, ...}
a € Addr {0, 1,2, ...}
d € Dev {stdin,stdout,file,files,...}
ecExpr = x' | c| &x | *x' | e; binop e,
seStmt := x:='e| xx:='e | if x’ thens| else s, |

[UNIT] while x‘ {s} | while x’ {s} | s1;52 |
x:=read!(d) | write’(d,x) | x; :=alloc’(x)
| skip | assert!(x) | exit

Figure 3. Language Syntax

To facilitate discussion, we introduce a kernel language. The
syntax of the language is presented in Fig. 3. We explicitly
model memory addresses. We allow the address-of and pointer-
dereference operations, pointer manipulation, and dynamic mem-
ory allocation through the alloc() statement. We explicitly model
devices and I/O with read() and write() statements. Failures are
modeled as assertion violations. The while loop with the [UNIT]
annotation denotes that it is a request handling loop. Supporting
concurrent programs is discussed in Section 9.

= Addr —>£d
1= Dev — Val

G € Store
1€ I0Store

veVal t=a|c
o € VarAddr  ::=Var — Addr
er € RefExpr :=x | #x
| ax) er=x
addrOf(e;) = { olafx)) e =*x

Figure 4. Definitions

Fig. 4 presents definitions for the semantics. In particular, the
variable address mapping o maps a variable to its address. The
mapping is static. The device store 1 denotes the state of device,
which is a mapping from a device to a sequence of values. A refer-
ence expression e, is the shorthand for a variable or a dereference
of a pointer variable. Method addrOf() identifies the address of
the given reference expression.

The semantics are presented in Fig. 5. We have two sets of rules.
The first set evaluates an expression to a value, provided the store
and the variable address mapping. The second set evaluates state-
ments. Statement evaluation has the configuration (s,c,1) with s the
statement, © the store and 1 the device store (defined in Fig. 4). Most
evaluations are standard. The evaluation of the annotated while
statement is the same as the regular while statement. Evaluation
terminates normally at (skip,G,1) or abnormally at (exit,oc,1).

We model simple stream devices through rules [Read] and
[Write]. In particular, one value is read at a time from the head
of a stream device; and a value can be written to the tail of the
stream. More I/O complexity is omitted to simplify our formal dis-
cussion. Our system supports most system calls and signals. Rule
[Alloc] describes dynamic allocation behavior. Symbol L means
undefined. Initially, the addresses of static variables are mapped to
value 0 in the store. The remaining addresses are not defined. We
assume infinite memory and do not model deallocation. Note that

EXPRESSION RULES

e .
e — v |parameterized on o and ©

— [Ref] ———F——— [Addr-Of]
et % o(addrOf(e,)) &x 5 o(x)
e1 Sv e Sy
—— [Const] R TR [Binop]
c—c ey binop ey — vy binop v,
STATEMENT RULES
(s,06,1) = (5,0’ ,V') | parameterized on o
_ ! __
uddrOf(e,) =a e—v 0 =0cla—] [Assign]
(e, :=le,0,1) 5 (skip,o’,1)
X < true
; 5 [1f-True]
(if x' then 51 else 52, G,1) — (51, O,1)
r=if x’ t;-len skip Selse exit [Asser(]
(assert’(x),0,1) = (r,0,1)
[Skip] [Exit]
skip;s, 0,1) > (s, 6,1 exit;s, 0,1 exit, 6,1
p I

Wd)=v-S a=o(x) o =ocla—v] V=1d—S]

7 5 [Read]
(x:=read’(d),0,1) — (skip,0’,V')
_ € ’_ .
d)=S x—=v 1 = Ud— S-v] [Write]
(write’(d,x),0,1) % (skip,c,V)
x5 size o(a,...,atsize—1) = L
’ e
o' =ola,...,a+size—1 — 0,0(x;) — d] [Alloc]

x1 :=alloc!(x),0,1) = (skip,o’,1
P

Figure 5. Operational Semantics

it does not mean our system cannot handle finite memory and deal-
location. Such complexity is just not needed for our discussion.
The evaluation rule specifies that with an allocation request of a
certain size, a consecutive sequence of undefined addresses of the
size is allocated. These addresses are then associated with value 0.
The base address is associated with variable x;. Note that multiple
valuations of a could satisfy the rule, which models the nondeter-
minism of dynamic allocation. We do not explicitly model memory
errors, which can be modeled by assertion failures if necessary.

3. Logging Semantics

In the logging phase, besides recording the I/O behavior of the
execution, our technique divides the execution into units and logs
memory reads and writes. The goal of logging memory accesses is
twofold. First, it identifies dependences between units. Particularly,
pointer dependences allow us to reconstruct relevant memory state.
Second, it allows restoring values when we choose not to replay
through dependences.

One naive way logs all accesses. To discover cross-unit depen-
dences, given a read access in unit Up from address x, the post-
processing algorithm traverses backward in the log file to find the
latest write to x that precedes the read. If the write is in a differ-
ent unit Uy, there is a cross-unit dependence between Uy and Ug,
denoted as Up ER Uy.

However, this simple logging strategy introduces a lot of redun-
dancy. In particular, if an address is written inside a unit, the values
of the following reads from the address in the same unit are deter-



ur € ReadMask u=  Addr — Unitld

1y € WriteMask = Addr — Unitld

L€ Log = U id € Unitld == Z7
U € LogUnit = UNIT(id,()-E

E € LogEntry = R(id,d,t,v) | W(id,d,l,v) |

FAIL(id,0) | y(id,C,a,v) | o(id,(,q)

enr € NoRefExpr
Sy € RegularStmt

¢ | &x | nil

skip | exit | while x’ {s} | 5115
if x{ then s; else 5, | x =l |
xx:="e | x| :=alloc’(xy)

l

e So= x:="e
ex!  so=sx:=le

expr(so) = x5 5o = x1 :=alloc!(x)
X So = if x' then s1 else s57

nil others

l

x so= x:="e
_ -
X s,= *x:='e
def(s _ 0
ef(So) X1 So = X] 1= alloc[(xz)
nil others
need2logwrite(s,) = letx=def(s,)in x#nil
Aty (addrOf(x)) # uid
accessed(a) = uy(a)=uid V py(a) = uid

uid: the shorthand for 6(a(unit_id));
uid 1: the shorthand for o(unit_id) — o(o(unit_id))+ 1.

Figure 6. Definitions for Logging Semantics

Execution Log Figure 7. The  ac-
I x=. . o(&x) cesses at 5y (that is,
2;  [UNIT] while { the 1st instance of
3, ..=x V(&) line 5) and 6; are
44 x=x+1; o(&x) redundant and not
51 =X logged. Symbols ()
6 X=opo and () represent
2, [UNIT]while { memory read and
3, .=x Y(&x) write logs.

ministic and such reads cannot cause any cross-unit dependence’.
Hence, logging them is unnecessary. Similarly, the following writes
in the same unit do not need to be logged. When a cross-unit de-
pendence involves one of these writes, keeping the first write in
the log is sufficient for disclosing the same unit level dependence.
Furthermore, if a read from an address has been logged, the fol-
lowing reads in the same unit don’t need to be logged because they
must have the same value and they only reveal the same cross-unit
dependence that the first read reveals.

Consider the example in Fig. 7. It shows a trace of two iterations
of an annotated loop. The read in 4 is not logged because of the
read at 3. The read at 5; is not logged because of the definition at
4. The write at 6; is not logged because of the write at 4.

The rules are presented in Fig. 8 and the relevant definitions can
be found in Fig. 6. We compute a few relations during evaluation.
According to the definitions in Fig. 6, relation x4, maps an address
to the id of a unit that most recently reads the address. It is used
to avoid logging redundant reads. Similarly, u,, identifies the most
recent unit that writes to an address. Symbol £ denotes the gen-
erated log. A log comprises a sequence of log units. A log unit U

' This assumes sequential semantics and Section 9 discusses handling
threads.

EXPRESSION LOGGING RULES
(e,ptr, L) = (., L') | parameterized on o, G, and u,,.

addrOf(e;) =a —accessed(a) v=0(a)

LE-Lo
ey, LY S (upla— uid), £- y(uid, l,a,v : el
r
addrO { (er) = ae accessed(a) [LE-NoLog]
<€;,,Ur,L> = <Hh£‘>
[LE-NoRef]
<enr7/~1r7£/> = </—lr7L>
€ /ot / n & 7
<€1,,l1r,L> = <,U,,L > <€2,,U,,L > = <urﬂL > [LE-BII’IOP]

(e1 binop ey, pur, L) = (!, L")

STATEMENT LOGGING RULES

(5,0,0, 4p o, L) = (s',6" V41, L") | parameterized on o

st = s; whilex! {s} o =ofuidl] L' = L UNIT(uid,()
(IUNITIwhile x* {s}, O, 1y, phy, L) =
(if x’ then sy else skip, &, 1,y iy, L')

[LS-Unit-While]

(x=read!(d),0,1) > (skip,0’,") a=a(x)

w, = uyla—uid] L' = L-R(uid,d,(,6'(a))

(x= read‘(d),c,l,,ur,,uw,L> = (skip, &',V pr,ptfy, L))

[LS-Input]

(write!(d,x),0,1) = (Skip,0,U') xS
o, £) = i, L) L = L (uid,d, L, v)
(write[(d,x),cs,l,,u,,,uw, L) é (skip,c,l’,y’r,,uw, LH>
[LS-Output]
(o, L) S (), L) x5 false L' = r'-FAIL(uid,()

(assert (x'), 6,1, uy, thy, L) = (exit, 6,1, 4., m,, L")
[LS-Assert-Fail]

(st £) % (i £) xS true

(assert(x!), 6,11y, thy, L) = (skip,G,1, 1., ty, L')
[LS-Assert-Pass]

(expr(so) iy, L) = (U, L) need2logwrite(s,)
(st 0,00 S (6" 0 a=addrOf(def(s,))
(55, O Lttt L) = (1,6 iy [a = wid], L - o(uid, €,a))
[LS-Log-Wrt]

(expr(so) iy, L) = (u., L) —need2logwrite(s,)

<S£7671’> i’ <r76/71’>

<an lev,urv,“va> é <r76/717/~1;7,“wv£//>
[LS-NoLog-Wrt]

Figure 8. Logging Semantics

corresponds to an execution unit, containing a UNIT() event fol-
lowed by a sequence of other events. The UNIT() event contains
the id of the unit and the program location ¢ of the loop that gen-
erates the unit. Besides the UNIT() event, we model other 5 kinds
of events, described by symbol E. In particular, R() and W() are the
input and output events, in which we log the unit id, the device id,
the program location of the event, and the input/output value. The
FAIL() event records an assertion failure. Events () and ®() repre-
sent memory reads and writes. The remaining definitions in Fig. 6
are auxiliary to the rules.

The expression rules are of the format (e,u,, L) = (i, L'),
provided o, o, and u,. Rules [LE-Log] and [LE-NoLog] evaluate
reference expression e,, which is either x or sx (Fig. 4). A reference
expression involves a memory read. It tests whether the address
being referred to has been accessed in the same unit (through



method accessed() defined in Fig. 6). If so, we don’t need to log
the read. Otherwise, we attach a vy event to the log and update
the most recent read unit of the address. Note that we introduce
a program variable unit_id to denote the dynamic unit id. Symbol
uid is shorthand for its value. Rule [LE-NoRef] handles expressions
not involving memory reads.

Statement evaluation has the configuration of (s, G, 1, tr, thy, L).
Rule [LS-Unit-While] specifies that uid is incremented and a
UNIT() event is logged when an annotated while statement is eval-
uated. Note that the UNIT() event leads the unit corresponding to
the iteration if the loop predicate evaluates true, otherwise, it leads
the unit corresponding to the execution from the end of the loop
to the beginning of the next annotated loop. Rules [LS-Input] and
[LS-Output] attach R() and W() entries, respectively, to the log. In
[LS-Input], the most recent write unit to the left hand side variable
x is updated. In [LS-Output], the read of x may be logged by the
expression evaluation. When an assertion fails (rule [LS-Assertion-
Fail]), a FAIL() event is logged. It is then the last event in the log
as the exit statement leads to the termination of the evaluation.

Rules [LS-Log-Wrt] and [LS-NoLog-Wrt] describe evaluation
of the other statements, denoted as s,, whose definitions are in
Fig. 6. Two auxiliary functions expr(s,) and def (s, ) are used. The
former function returns the expressions that need to be evaluated
for a s, statement. Such expressions lead to memory reads. For in-
stance, expr(#x =t e)= e,x', with e, x being the concatenation of
the two expressions. When the concatenated expression is evalu-
ated under rule [LE-Binop], e is evaluated first and then x, ensuring
the reads are logged in the proper order. Function def (s, ) returns
the target of a memory write if s, involves one, or nil otherwise.
In rules [LS-Log-Wrt] and [LS-NoLog-Wrt], the expressions s, are
first evaluated. If the write target has not been written previously in
the same unit, a ®() event is logged (rule [LS-Log-Wrt]). Evalu-
ation starts with L = UNIT(0,0) such that the execution from the
beginning to the start of the first annotated loop belongs to U.

4. Reduction Algorithm

pointerdep(U,X) = 3Fw(id,l,a) € U and y(id',¢',a,v) € X, s.t. ispointer({) A
)-S

Ao(id" 0" a) € Swith ©(id,l,a)-S-y(id' ¢ ,a,v) C L

U = UNIT(uid,0)-S A U-U' C L A U' =UNIT(uid +
LO)-S'ALEL

isloopexit(U) =

X € ReducedLog == U

LOG REDUCTION | (£,X) ~ (£/,X")

FAIL(id,l) € U,
<L/, -Uc,nil) ~ <L/,,U(->
[X-Crit]

pointerdep(U,X)
(Ly-U,X) ~ (L,U-X)
[X-PointerDep]

isloopexit(U)
(L U.X) ~ (L, U-X)
[X-LoopEXxit]
—pointerdep(U,X) —isloopexit(U)
(Ly-U,X) ~ (Lp,X)

(U,X) ~ (nil,U - X)
[X-FirstUnit]

[X-Reduce]

Figure 9. Log Reduction.

Given a replay criterion, e.g. a failure, our reduction algorithm
identifies a small subset of units that are replayable and produce
the criterion. The approach includes units that are relevant to the
criterion through cross-unit pointer dependences or other complex
dependences such as those through buffers and complex fields in
data structures. We call this replay by dependence. For uses of vari-
able having primitive types and defined in other units, we retrieve

505

1

2 [UNIT] while (...) UNIT(0,0)-... || UNIT(1,2)-... |
3 S13 X X

PR UNIT(i,2) ... |-|UNIT(1+1A,5)~A..|
5 [UNIT] while (..) oo | UNIT(},5) - ...

6 8§33

(a) Code (b) Original Log

Figure 10. Ex. for reduction with structural constraints. Variables
i and j are ids and the 2nd numbers in UNIT() are line numbers.

the values from the log, avoiding replay of their dependence prece-
dence. We call this replay by value. For example, if a pointer x is
defined in unit Up and then used in Uy, we need to replay Up if we
replay Uy . Assume x has a primitive field f, and x — f is defined
in Uc and used in Uys. We don’t need to replay Uc when replaying
Uy as we acquire its value directly from the log.

The reason for this design is that restoring pointer values from
the log is problematic due to dynamic allocation. Furthermore,
for dependences on buffers and complex fields, restoring values
implies logging their values, which is much more expensive than
logging primitive variables/fields.

Note that our technique nonetheless allows the developer to
replay primitive variables/fields by dependences if needed. All the
necessary information is available in the log. One can imagine
cases in which the root cause resides in a unit different than the
criterion and affects the criterion through primitive dependences,
the developer can choose to replay the dependence of a primitive
value if she/he decides the value is suspicious and wants to inspect
the computation leading to the value.

Fig. 9 presents the log reduction algorithm. The evaluation starts
with the original log £ and an empty reduced log X = nil. The
units in L are evaluated in a backward fashion. The evaluation
terminates with all units processed, and X is the reduced log. Rule
[X-Crit] adds the unit containing the criterion event to X. In this
paper, we assume the criterion is a failure. Rule [X-PointerDep]
mandates that the last unit in £ is added to X if some unit in X has
a pointer dependence on the unit. Method pointerdep(U,X) tests if
there is a memory write in U and a read in X with the same address,
and there is not other writes to the address in-between. If so, the unit
is added to X.

Rule [X-LoopExit] tests whether a unit under consideration de-
notes a loop exit, meaning the unit encompasses the execution be-
tween the exit of an annotated loop and the beginning of the next
annotated loop. If so, we need to add the unit to X to respect the
structural constraint. If we did not, and the unit were not replayed,
the execution wouldn’t be able to get out of the annotated loop.
Method isloopexit(U) decides whether U is a loop exit by testing
whether the label of the leading UNIT() event of the unit is different
from that of the next unit. A unit is reduced if there are no pointer
dependences between the unit and the previously computed X and
it is not a loop exit (rule [X-Reduce]). Finally, the first unit, which
corresponds to the execution from the beginning to the first anno-
tated loop, is always included (rule [X-FirstUnit]). This is for the
consideration of structural constraints.

Consider the example in Fig. 10. There are two annotated loops.
Figure (b) shows a sample log. Each box represents a unit. Assume
the replay criterion is Uj;, the shorthand for the unit starting with
UNIT(/,5), and it has no cross-unit pointer dependences with any
other units. According to the rules, units Uy and U; are included
in the reduced log. Uy drives the execution to the loop at 2 and U;
forces the execution get out of loop 2 and reach loop 5.
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Figure 11. Replay Semantics.

Note that dividing an execution into units simplifies the struc-
tural constraints. We do not support nested annotated loops. In such
cases, the outer annotations are ignored.

5. Replay

Replay is driven by the reduced log. It can be considered a dual
process of logging. The rules are presented in Fig. 11. Lets first
consider the expression rules. If a memory read is not on a pointer
value, we replay by restoring the value from the log (rule [RE-

ByValue]). The store is updated with the logged value. Note, the
rule dictates that the logged label and the current label match,
ensuring the read happens in the same program point as before.
During replay, the masks u, and u, are maintained in the same
way as in the logging phase so that the replay algorithm can avoid
restoring values that were found to be redundant during logging.
This is important to the synchronization of the replay and the
reduced log. Hence, in rule [RE-ByValue], u, is updated to reflect
that the address has been read in the current unit. If the memory
read is on a pointer value (rule [RE-ByDep]), we don’t restore the
value. Instead, the value is presently available due to earlier replay
operations. Hence, the algorithm simply removes the current log
entry. The other expression rules are similar to the logging rules.

The statement rules are similar to those in the logging phase.
We summarize the key features of the replay rules as follows.

e In order for replay to progress, the reduced log has to perfectly
align with the evaluation, indicated by the label of the current
evaluation must be identical to that in the current log entry. This
is highlighted in the boxed premises.

The rules do not require that the current unit id uid matches

the logged id (e.g. rule [RS-Unit-While]), because the current

id could be different due to reduction.

e Replay does not concern devices. The I/O rules only interact
with the log file.

e Many rules involve evaluating expressions to values. Such eval-

uation is conducted after the proper values are restored from

the log. For instance, in rule [RS-Output], evaluation x iw vis

parameterized on the updated store.

In rule [RS-Output], the output value v is constrained. It serves

as a validation rule. Intuitively, we demand that the observable

outputs match those recorded in the reduced log.

6. Replayability

We say a reduced log is replayable if it successfully drives the
replay to the criterion. It is equivalent to the progress property
for the rules in Fig. 11. Intuitively, the replay control flow has to
perfectly align with the reduced log such that proper events can
be retrieved. The replay outputs have to match the logged values.
Otherwise, the replay evaluation will get stuck.

T € Trace::=1
p € Pointer ::= pnt(b,z, f)
b € BaseAddr ::= Addr

t € TraceEntry ::= trace(s’,v, p)

7€ Size=27" fEOffset :==27ZT

We leverage traces to formally discuss replayability. As pre-
sented above, a trace is a sequence of entries. A trace entry is a
triple that records the evaluated statement s, the right hand side
value v and the canonical pointer value if it is a pointer. Canon-
ical pointer values allow us to reason about pointer equivalence
between the original run and the replay. It is a triple tracking the
base address, the size of the allocated region, and the offset in the
region. A pointer obtains its canonical base address and region size
at the address-of operation or the alloc() statement, with initial
offset 0. The region size for an address-of operation is 1, indicating
it is pointing to a variable. Offsets are updated by pointer manipu-
lations. The semantics for tracing is omitted.

Definition 1. (REPLAYABILITY)

Let X be a reduction of L for a given criterion. Let the subtrace
corresponding to X in the original run be T, the replay trace be T.
We say X is a replayable reduction if T =7 T.

Note that 7" corresponds to the executions of all the units that are
in the reduced log. The trace equivalence operator =7 is defined in
Fig. 12. It demands the two traces have the same number of entries
and the corresponding entries are equivalent. If the corresponding



Ly =1Ly ispointer({1) py=pnt(bi,z1,f1) p2=rpnt(b,22,f2)
I, bi=by=0(x) fi=H=0 z1==1

4 . T — T
trace(s,',vi,p1) = trace(sy’,v2,p2)

0y =1Ly ispointer({y)
PzZPm’:(bLZz,fz) n=2 fi=hHh
Ji, ; = trace(x| := alloc(x2), by, pnt(by,z1,0) ) and
fi = Er—;c;(xl :=alloc(xz), b2, pnt(b2,22,0) )

p1 =pnt(b1,z1, /1)
),

7 —h
trace(s,',vi,p1) = trace(sy’,v2,p2)

T=rT

[TEQ-P1]

[TEQ-P2]
ly =1ty ~—ispointer(f) vy =v
T er(l) =2 [TEQ-Val]
trace(s,',vi,p1) = trace(s,’,v2,p2)
IT|=|T| YO<i<|T|, t;=F [TEQ]

Figure 12. Trace Equivalence.

entries involve non-pointer values, their equivalence is determined
by the equivalence of the statements and the values (rule [TEQ-
Val]). If the entries involve pointers, the pointer values must be
identical if they point to some variable (rule [TEQ-P1])2. If they
point to dynamically allocated regions (rule [TEQ-P2]), the regions
must be allocated at corresponding execution points and have the
same size and the same offset (¢; and 7; are the ith entries in the two
traces). Note that the base addresses of #; and 7; might be different
as less memory is allocated in the reduced replay.

Theorem 1. [fthe program only allows comparisons and subtrac-
tions between two pointers, the reduction scheme in Fig. 9 is re-
playable in the absence of overflow.

Overflow is defined as follows.
ispointer({) p=vpnt(b,z,f) f>z
overflow(trace(s’, v, p))

For example, in the following program snippets “1. b=&x;
2. p=b+1;”and“1l. b=alloc(10); 2. p=b+12;”,over-
flows occur in statement 2s.

Proof Sketch of the Theorem 1 To prove replayability, we
want to prove trace equivalence. According to rule [X-FirstUnit],
we always replay the first unit. As a result, the theorem holds for
the trace entries corresponding to the first unit.

Next, we prove by induction. We assume the theorem holds for
the first & entries, and prove that it holds for the (k+ 1)th entry, that
is, g1 =1 fy 1

First, the statement under evaluation for the (k + 1)th entry
must be the same as the result of the equivalence of the previous
entries. In particular, any predicate guarding the statement must
have been evaluated previously in equivalent entries. Also, it must
have been evaluated to the same result according to the assumption,
leading to the execution of the same statement in the k4 1 entry.
Hence, we only need to prove all the uses (references) in the entry
have equivalent values. Without loss of generality, let’s consider a
reference of variable x.

In case (1), x has a non-pointer value. Assume in the original
run, the value is defined by a previous evaluation, denoted by trace
entry ¢;. If #; and #; | are within the same unit, an equivalent
evaluation must have occurred in 7 ;. In the absence of overflow,
there are no other assignments to the same address during replay.
Hence, x must have an equivalent value in 7| during replay. If 7;
and #;4 are in different units, the value of x is retrieved from the

2 We assume the variable-address mapping o is static.

log according to the replay semantics, and x is equivalent across
runs.

Note that execution reduction causes alloc() to return different
values during replay because many allocations may be reduced
away. An overflow pointer may cause different variables to be
overwritten. For instance, assume dynamically allocated buffers
A and B are next to each other in the original run, A and C are
adjacent in the replay. Assume an overflow pointer based on A
overwrites B, the equivalent pointer overwrites C during replay. In
other words, in the presence of overflows, writes though pointers
with equivalent values at equivalent points may write to different
variables (regions).

In case (2), xis a pointer. Assume it is defined at ;. When ¢; and
tr4+1 are in the same unit, the equivalence can be derived as in case
(1). If they are in different units, denoted as U,, and U, respectively,
U, is replayed according to our reduction rules. In the absence of
overflow, it can be inferred that x is not redefined in-between 7 7 and
fi+1. Otherwise, the same redefinition must have occurred in the
original run. The value equivalence at the (k + 1)th entries can be
derived from the equivalence at the jth entries.

Similarly, we can prove the equivalence when the reference is
through a pointer, i.e. *x.

Finally, it can be inferred that the same expression must yield
an equivalent value if all references in it have equivalent values,
assuming only the supported operations. O

According to the theorem, replayability is not guaranteed in our
model in the presence of overflow. In real-world scenarios, how-
ever, if the overflow is a stack overflow, due to the determinism
of variable layouts, we can always replay. For heap overflows, al-
though we may not encounter the original failure, we very likely
encounter a memory failure in a different place due to the non-
determinism of heap allocations. We can attach the replay to a
memory error detection tool, such as valgrind’s memcheck, to iden-
tify heap overflows.

Note that traces and canonical pointer values just facilitate our
definitions and proofs. The technique does not need to trace execu-
tions or compute canonical pointer values.

7. Aggressive Reduction

Although we divide executions into relatively independent units,
non-trivial pointer dependences may limit the possible reduction.
The reduction scheme in Fig. 9 is sometimes too rigid. Namely, the
scheme requires that pointers used in equivalent evaluation points
are defined at equivalent points with equivalent canonical values.
However, as long as the pointer is pointing to the same variable or
to the same offset of a region with the same size, the places they
are defined are irrelevant because the value stored at the pointed-to
address can be either restored from the log (if defined external to the
unit) or recomputed (if defined internally). Moreover, we need to
ensure that pointers to the same variable or to the same region in the
original run retain such aliasing relations during replay. Otherwise,
undesirable overwriting and different results in pointer comparison
may occur so that the replay fails to make progress.

pi/q

p=alloc(...);

o vyl [

n=alloc(...); N R
posnext=n: P q Figure 13. According

p=n: to the reduction rules
4p; U, (1] 2] | in Fig. 9, the log is not
P q reducible. However, Uy
and U, are a replayable
reduction assuming the
criterion is in Us.

p—val=3;
if (q—val<3)
U,

O 0 AN N B W N o=




Consider Fig. 13. Three units are presented on the left. The
execution maintains a linked list, the state of which is presented
on the right at the end of each unit. Pointers p and ¢ always
point to the tail of the list. Assume the criterion is in U,. Because

U, LR U, LN Up, we cannot achieve reduction by rules in Fig. 9.
However, Uy and U, compose a replayable reduction because the
region pointed to by p at the end of Uy is compatible with that at
the end of Uy, and the aliasing relation of p and ¢ is the same at the
end of the two units. In other words, the state of the list at the end
of Uy is sufficient to drive the execution in U,. Note that if after U
p and g were pointing to different regions, the predicate at line 8
would take a different branch, making the reduction not replayable.
In the following, we formally define compatibility.

Definition 2. [COMPATIBILITY]

Let X be a reduction and T be the sub-trace corresponding to X in
the original run. X is compatible if and only if for each U € X, the
following conditions are satisfied.

1. for each read to an address a logged in U (hence its definition
must be external to the unit) for a pointer value pnt(b,z, f),
there must be a closest preceding write to a in T with the
canonical value pnt (b, z, f).

2. for each pair of reads from addresses ay and ay in U with
pointer values pnt(b,z, f;) and pnt(b,z, f;), respectively, the
closest preceding writes to ay; and ap in T must have the values
pnt(b/>z>fi) and pnt(b/>z>fj)'

In condition 1, the read would receive its value from the clos-
est preceding write in 7 instead of the original write during replay.
This dictates the two writes have the same size and offset. Condi-
tion 2 dictates the region level aliasing be retained. Note that the
pointer offsets f; and f; may be different. Consider the code snip-
pet within a unit “1. x=p+2; 2. xx=9; 3. .. .=+q;”. Assume p
and ¢ are defined externally to the unit, pointing to the same region
and with offsets 0 and 2, respectively, so they do not alias. Variable
x is defined internally. After line 1, x and ¢ point to the same ad-
dress and hence the dereference at line 3 has the value 9. To ensure
faithful replay, we must ensure p and ¢ point to the same region.

Theorem 2. A compatible reduction is replayable.
The proof is omitted for brevity.

Search for Compatible Reduction. Given a criterion, there may
be multiple compatible reductions. We use a BFS algorithm to find
a compatible reduction. In particular, given a criterion, the algo-
rithm first includes only the units dictated by structural constraints
(the first unit and all loop exit units) and tries to replay with such a
log. If replay fails (gets stuck), the algorithm further includes units
that are 1 pointer dependence edge away, then 2 dependence edges
away, and so on, until a compatible reduction is found.

8. Optimizing Instrumentation

To reduce logging overhead, we limit instrumentation to the data
structures and variables that may cause inter-unit dependences. We
further remove unnecessary instrumentation through static analy-
sis. The analysis is similar in spirit to definite assignment analy-
sis that decides if a local variable must have been initialized. The
analysis computes the set of data structure fields and variables that
must have been either read or written before a program point within
a unit. Such information can be used to discover redundancy. For
instance, instrumenting an object field read is not needed if the field
must have been read or written before. Details are elided.

9. Handling Concurrent Programs

Our technique supports concurrent programs. The system currently
supports only a single core due to limitations of the underlying

Jjockey infrastructure [18]. More discussion resides in Section 10.
We leave supporting multiple cores to future work. Presently, we
discuss the extensions to support concurrent programs.

Maintaining Unit Id. The rules in Fig. 8§ assume sequential se-
mantics. Since units do not interleave, we can use a unit id variable
across the entire program, which is not sufficient for concurrent
programs. We consider two possible threading models. In the first
one, an annotated loop does not spawn any thread but rather resides
in a thread. We use a thread local unit id for the loop. In the other
model, threads may be spawned inside an annotated loop. We need
to properly attribute thread execution with the unit id of the loop.
We use a thread local unit id, which is inherited from the parent
when a thread is spawned.

Remote Definitions. With sequential semantics, we identify redun-
dant reads and writes by comparing the current unit id and that
stored in u, and w,,. In the presence of thread interleaving, the value
of a memory read may be defined remotely by a unit in a different
thread. In such a case, the read should be logged even if it has a
local definition in the same unit. To handle such cases, we use a
pair comprising a thread id and a thread local unit id to denote a
unit globally in the masks y, and u,,. Upon a shared variable write,
both masks are updated. If the remotely defined value is read for the
first time, the difference between the global id in the masks and the
current id would entail logging the read. This allows us replay by
value. Replay by dependence is supported by recovering the total
order of memory reads and writes for the same variable, which is
easily achievable by inspecting the log. Note that the logging rules
in Fig. 8 don’t need to change except the above extensions.
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Figure 14. The accesses to x are interleaved in two threads. The
ur(x) and 4, (x) columns show the state of the masks after each
statement execution.The boxed executions are logged.

Consider the example in Fig. 14. Two threads interleave. State-
ment 2 is logged according to rule [LE-Log]. Statement 11 is
logged according to rule [LS-Log-Wrt]. Note, it updates both - (x)
and g, (x). Statement 3 is logged according to rule [LE-Log] even
though there is a unit-local write earlier in the same thread. The re-
motely defined value is hence logged. Statements 4 is not logged
because u,(x) is equivalent to the current id (by [LE-NoLog]).
Statement 12 is not logged because i, (x) is equivalent to the cur-
rent id (by [LE-NoLog]). Intuitively, the remote reads in-between
11 and 12 do not modify the value of x and there is no need to log.

10. Evaluation

Our system makes use of LLVM, jockey, and pin. We use LLVM
to analyze and instrument programs. The logging runtime works
through jockey, an application level logging and replay tool [18].
It works directly on binaries by rewriting the instruction sequences
that make syscalls to intercept the calls. This design makes it very
efficient; HP used it for debugging distributed systems. Previously,
Jjockey logged only syscalls and signals. We extend it to log mem-
ory accesses, directed by instrumentation inserted by the LLVM
pass. Jockey currently only supports one core. The jockey replay
component is insufficient to support our technique as it cannot in-
tercept memory accesses. We implement our replay component in



pin, a dynamic instrumentation tool. Using pin provides flexibility
for integrating reduction with future dynamic analysis. Reduction
is implemented in C++. The overall implementation is 10k LOC.

Applications LOC threads | Bug description
#1: Atomicity violation (21287)
Apache-2.0.48 157K 16 #2: Unprotected buffer
#3: Cache size problem (21285)
#1:Failure in leader election
BerkeleyDB-4.7.25 172K 3 #2:Panic caused by out-dated msgs
Squid-2.3.4 62K 1 Buffer overflow (4148)
MC-4.5.55 106K 1 Buffer overflow (8658)
W3M-0.5.2 51K 1 Out of memory (492290)
VIM-7.0 230K 1 Hangs (100%CPU usage)
DC-1.3 9.5K 1 Segmentation fault (135029)
YAFC-1.1.1 40.6K 1 Segmentation fault

Table 1. Application and bug description

Applications annotated data func. instrumen-. instrmt.

loops structure tation after opt.

Apache 2 32 227 2,333 1,775
BerkeleyDB 3 47 1,371 24,338 15,319
Squid 1 21 401 2,877 2,232
MC 1 18 372 1,967 1,460
W3M 1 12 408 5,506 3,609
VIM 1 25 1,319 12,040 8,375
DC 1 2 44 641 521
YAFC 1 8 287 1,785 1,337

Table 2. Static instrumentation.

All experiments were conducted on an Intel L2400 1.66GHz
CPU with 3GB of RAM running Linux-2.6.11. We evaluate our
technique on a number of real world programs and real bugs from
them as the reduction criteria. Table 1 presents the programs and the
bugs. BerkeleyDB is a distributed database. Squid is a proxy
server. MC is a user interactive file explorer. W3M is a text-based
web browser. Vimis an advanced text editor and Dc is a calculator.
YafcisaFTP client.

The instrumentation results are presented in Table 2. It presents
the number of annotated loops, the data structures and functions
that may cause inter-unit dependences, and the instrumentations
before and after the static optimization (Section 8). Observe that
only a few loops need to be annotated. These loops further call
other functions to carry out computation. Some of the functions
may cause interesting dependences. Although our technique only
instruments access points of certain data structures in certain func-
tions, the number of such points is large due to the program size.
The static optimization effectively reduces many of them (1/3 for
the BerkeleyDB and VIM). It is worth mentioning that the large
number of static instrumentation points do not induce high run-
time overhead because we also avoid redundant logging at runtime.
Figure 15 shows an annotation example from the Apache web
server. Apache is a multi-threaded application and two loops
were annotated. It is easy to figure out these loops because they are
in the main body of each thread.

Table 3 presents the runtime overhead. In this experiment and
the next space overhead experiment, we use test inputs provided
with the programs if available or randomly generated inputs other-
wise. We will also show results on real world workloads later. The
2nd column shows the native execution time. Columns 3-6 present
the overhead of our technique over the plain jockey logging with
different configurations: without any optimizations (i.e. log all ac-
cesses of the relevant data structures), static optimization only, i.e.
removing instrumentation through static analysis (Section 8), dy-
namic optimization only, i.e. avoiding redundant logging during
execution via yu, and u,,, and both optimizations. The 7th column
presents the accesses identified as redundant by the dynamic op-
timization. The last column presents the jockey overhead (without
our technique) for reference. The overhead of our technique is very
small after both static and dynamic optimizations, but dynamic op-
timization is the more effective of the two. Its effectiveness is sup-
ported by the number of accesses that are found to be redundant. If
an access is redundant, we only pay the cost of a few (usually 2)
extra memory accesses and one comparison. Otherwise, we have
to update y, and/or u,,, store the access information into a buffer,
which will be flushed to the log file later. Note that W3M is a user-
interactive application without a batch mode, thus we could not
measure its run time.

A jockey log our log w/o opt. our log with opt.
PP entry size(MB) entry size(MB) entry size(MB)

Apache 29k 8.79 58,826k 379.82 7,644k 47.24
DB 539k 6.3 11,447k 85.86 502k 343
Squid 734k 22.18 44,838k 265.46 5,101k 30.35
MC 255k 12.9 10,499k 67.94 715k 4.34
W3M 14K 4.42 6,483K 42.34 834K 5.09
VIM 151k 4.14 49,970k 123.48 3,974k 23.27
DC 1,035K 12.45 24,970K 160.55 846K 5.04
YAFC 1,324K 49.11 10,428K 63.95 295K 1.78

App time w/o opt stat dyn stat+ rednt. jockey
(sec) dyn access
Apache | 210.0 2.8% 1.77% 0.97% 0.17% | 87.01% | 3.46%
DB 483 9.55% 8.47% 5.92% 420% | 95.61% | 2.94%
Squid 79.04 30.6% 12.1% 2.23% 1.1% 88.62% | 2.53%
MC 58.1 29.7% 27.5% 3.35% 2.26% | 93.13% | 3.25%
W3M N/A N/A N/A N/A N/A 87.13% N/A
VIM 55.26 | 42.15% 34.0% 5.3% 3.93% | 92.05% | 0.94%
DC 35.63 | 85.32% | 43.93% | 13.62% 4.8% 96.8% 7.11%
YAFC 63.03 | 23.75% | 17.25% 4.02% 1.82% | 97.17% | 3.48%

Table 3. Logging overhead

Table 4. Recording space overhead

Space overhead is presented in Table 4. We present both the
number of log entries and the log size. For comparison purposes,
we separate a log file into the jockey log and our log. Observe that
our log size is comparable to the jockey log size for most cases
except apache and VIM, which have a lot of memory accesses
with effects crossing unit boundaries. Our log has more entries, but
each entry has a smaller size as it only records a memory access.

Table 5 presents reduction effectiveness. In the experiment, we
weave inputs used in the previous experiment with failure induc-
ing inputs. For Ul programs, the failures are induced by a sequence
of user actions. We interleave the sequence with the (much longer)
original inputs. For example in MC, the bug is triggered by follow-
ing a directory path to a specific file and opening the file. We in-
terleave the failing sequence with the original normal actions such
as browsing different directories and opening other files. For server
programs, failures are triggered by setting specific configurations at
the beginning and providing specific requests at the end. Note that
playing the last few events in the jockey log does not work due to
dependences. More discussion can be found in the Vim case study.

Columns 2-4 present logs before reduction including the num-
ber of units (not event entries), jockey and our log sizes. Columns
5-7 present the reduction result if all dependences are considered.
Columns 8-10 present the result if only pointer dependences are
considered. Columns 11-15 present the result of compatible reduc-
tion. That is, we conduct breadth first search along pointer depen-
dences, looking for compatible reduction. Column 14 shows the
depth of the BFS search. Observe that pointer dependence reduc-
tion sometimes can achieve good reduction. The last column shows
the log reduction time including the replay time needed during re-



697 static void *listener-thread(apr-thread-t *thd, void * dummy) {

729
730

[UNIT] while(1) {
if (requests_this_child <= 0) {

896 } // while end

9

0} // listener-thread function end
[server /mpm/worker /worker.c|

(a) Listener thread annotation

923 static void *worker_thread(apr_thread_t *thd, void * dummy) {

946 [UNIT] while(!lworkersmay_exit) {

947

1003

if(tis_idle) {

} // while end

1015 } // worker_thread function end

[server /mpm/worker /worker.c|

(b) Worker thread annotation

Figure 15. Loop annotation example (Apache)

log b/f reduction reduced log w. all deps reduced log w/o search reduced log with search

Bugs units jocke ours units jocke: ours units jocke ours units | jocke: ours BFS Reduction

(MB (MB) (MB (MB) (MB;I MB (MB}’ (MB) | level | time(sec)
Apache#1 14,989 8.55 47.1 14,989 8,55 47.1 14,975 8.53 47.1 16 0.14 0.51 1 5.9
Apache#2 14,991 8.54 47.4 14,991 8.54 47.4 14,989 8.53 47.4 40 0.29 1.34 1 6.4
Apache#3 | 15,005 8.54 473 15,005 8.54 473 15,004 8.54 473 20 0.17 0.69 1 6.1
DB#1 2,033k 144.9 25.7 832 5.85 0.122 10 0.07 0.0015 2 0.06 0.0007 1 5.6
DB#2 459k 37.6 8.36 54 3.52 0.047 8 0.44 0.005 4 0.42 0.0018 1 52
Squid 8,000 222 30.4 8,000 222 30.4 8,000 222 30.4 91 0.34 0.35 6 24.8
MC 5,348 13.4 4.35 5,348 13.4 4.35 14 1.25 1.12 5 0.69 0.93 1 5.4
W3M 961 1.67 3.98 961 1.67 3.98 961 1.67 3.98 2 0.03 0.021 1 49
VIM 2,544 4.14 23.27 2,544 4.14 23.27 2,369 4.02 22.66 12 0.035 0.279 1 5.8
DC 6,580 12.45 5.04 6,580 12.45 5.04 6,580 12.45 5.04 14 0.94 0.65 1 1.4
YAFC 196 49.11 63.95 196 49.11 1.78 196 49.11 1.78 4 0.11 0.001 1 3.5

Table 5. Log reduction results
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Figure 16. Runtime and space overhead with real-world workload.

duction. The replay time of the reduced log is similar to the re-
duction time and elided. The dominant factor of replay time is the
infrastructure overhead of Pin. The search algorithm (compatible
reduction) can always achieve good results. The reduced logs are
very small, leading to very short replay times. Furthermore, we
want to point out that by paying the one time reduction cost, the
programmer has a much smaller run to analyze for arbitrary number
of times. Hence, the benefit may go beyond the savings compared
to the original run. Moreover, the level of search tends to be small.
We suspect that many memory states are compatible, allowing us
to find one quickly. Note that small search depths do not mean our
technique only acquires units towards the end of execution. Re-
call that our algorithm (Section 7) starts with a skeleton of units

Unit 1: first unit, need to include

Unit 2 : turn on syntax highlights

Unit 3 : open filel

Unit 44 : open file2 (bug triggering file)

Unit 508 : unnecessary unit

Unit 1066 : open file3

Unit 1187-1188 : unnecessary units

Unit 2489 : open file4

Unit 2541 : go back to file2 (from memory buffer)
Unit 2542 : unnecessary unit

Unit 2544 : goto the bug triggering line in file 2. Failure!

Figure 17. Reduced log of Vim

based on structural constraints. More units (and their skeletons) are
added through search. Even the initial skeleton may contain units
distributed along the whole execution. Furthermore, traversing one
dependence edge can reach distant units. For instance, a unit close
to the end may likely depend on a unit near the beginning.

Practicality Study With Real Workload. In order to evaluate the
practicality of our technique, we study its efficiency and effective-
ness on the two server programs apache and squid with real-
world workloads. Specifically, we acquired the high level web re-
quest log for our institution’s web-site for one week. We wrote a
script to regenerate the workloads for 1-7 days and fed them to the
two server programs. At the end of each workload, we also sup-
plied the failure inducing requests to trigger the failure. The aver-
age runtime overhead and aggregated space overhead are presented
in Figure 16. Observe that the runtime overhead is more or less
consistent. The space overhead is reasonable for a few days’ exe-
cution. The replayable, reduced logs (not shown) are consistently
small. These results show the practicality of our technique.

Case Study. We present the VIM case in detail. Fig. 17 shows the
reduced version of a large log. The failure occurs as follows. Unit
1 (U1) is the first unit, containing execution from the beginning to
before the first request loop iteration. At U2, the user enables syntax



highlighting, a precondition of the bug. Next, four files are opened
with file editing actions in-between the openings (note that the unit
ids of open units are not contiguous). VIM allocates a memory
buffer for each file, so after U2489, there are four buffers. Here,
the user switches back to file2, which is loaded from the buffer. At
U2544, the user scrolls down to a specific line. When the syntax
highlighter tries to parse the line, the bug is triggered (VIM hangs).

The reduced log includes 12 units. The skeleton contains the
failing unit U2544 and the first unit Ul. The skeleton is not re-
playable. With one step pointer dependence edge traversal, the 12
units are included. In particular, the dependences between file open
units are through the memory buffer data structure xfilemark.
These units construct a compatible memory state for the execution
of U2544, and hence leads to successful failure replay. In particular,
the failure demands the four files be loaded otherwise the memory
buffer state would be different, leading to control flow difference
and hence mis-alignment between the control flow and the replay
log. Furthermore, it demands U2 to activate syntax highlighting.
We also manually inspect the reduced log and find that 4 units are
unnecessary. In other words, the ideal minimal reduced log contains
8 units. The 4 units are included because they are also reachable in
one dependence edge and they do not change compatibility.

From their ids, observe that the units are sparsely distributed
along the entire execution. A naive idea of replaying the last a
few units would not work. We further inspect all the reduced logs
and find that the second unit of the reduced log (the first unit is
always included in the reduced log) is indeed in the early stage of
the original executions except the W3M bug and BerkeleyDB bug
#1.

11. Related Work

Execution fast forwarding (EFF) [19, 25] also has the goal of re-
ducing logs. EFF does not instrument the program during the log-
ging phase. Instead, it analyzes dependences between event entries
offline, either through static analysis or by replaying the whole exe-
cution once to detect dependences, which is too expensive (usually
10X slowdown). EFF does not guarantee replayability. In this pa-
per, we show that with small cost, we can acquire a reducible log
on the fly. Reduction can be achieved by analyzing the log, with-
out static analysis or replaying the full execution. We also observe
that EFF is too conservative in considering all dependences, often
leading to very little reduction. In contrast, we weave value and
dependence based replay to a novel and highly effective scheme.

Language based replay [21] allows users to replay a program
component (module). It uses profiling to find a replay cut to min-
imize logging efforts. Whereas the technique can be considered a
reduction on the program dimension, our reduction is on the tem-
poral dimension, and we believe the two dimensions are orthogo-
nal. Moreover, to use their technique, the user has to know about
where a bug might be to do selectively logging. In comparison,
our logging is general. We also handle failures that cross compo-
nents. SCARPE [10] is a similar component based technique for
Java. Subgroup replay [23] groups processes and records only inter-
group messages.

Checkpointing [4] is a standard approach to avoid replaying a
whole execution. Incremental checkpointing [3, 15] avoids over-
head from capturing memory snapshots. Language based check-
pointing [22] allows users to checkpoint at arbitrary program points
with contexts. Our technique is complementary to checkpointing,
e.g., our technique can further reduce an execution between check-
points. Furthermore, we allow fine-grained reduction at the unit
(loop iteration) level.

There are software based replay systems that record individual
memory accesses and their happens-before relations [5]. Such sys-
tems induce substantial runtime overhead. There has been substan-

tial work on software based record and replay for parallel and dis-
tributed systems [2, 6, 11, 17, 18]. These systems only perform
coarse-grained logging at the level of system calls or control flow
and hence are not sufficient for reduction. Hardware based logging
and replay [7, 8, 12, 14] can faithfully replay executions. While
such techniques are effective, they demand special hardware.

In recent years, significant progress has been made in testing
and debugging concurrent programs [1, 9, 13, 16]. These tech-
niques search for a failure inducing schedule given certain inputs.
In the future, we plan to leverage these techniques to generate re-
ducible logs on multiple cores.

Delta debugging [24] reduces a failure inducing input by repeat-
edly running the program on subsets of the input. The process could
be expensive for long execution.

12. Conclusion

We propose a compiler based technique that generates a reducible
replay log. The technique divides an execution into units, mainly
iterations of event processing loops. We instrument programs in-
strument to collect minimal additional information like memory
accesses into the replay log. Given a criterion, reduction can be
achieved through analyzing just the log. Our technique is auto-
mated, only requiring annotating the event processing loops. It is
highly efficient: the average runtime overhead is 2.6% and the ad-
ditional space consumption is comparable to logs containing only
syscalls and signals. Our reduction and replay scheme is also novel.
It seamlessly weaves value based replay and dependence based re-
play to achieve both great reduction and faithful reconstruction of
memory state. Our results show that we can reduce executions with
up to 2,033K units to less than 91 units.
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