
PFC: Transparent Optimization of Existing Prefetching Strategies for
Multi-level Storage Systems

Zhe Zhang ∗ † Kyuhyung Lee ∗ ‡ Xiaosong Ma† § Yuanyuan Zhou‡

Abstract

The multi-level storage architecture has been widely
adopted in servers and data centers. However, while
prefetching has been shown as a crucial technique to ex-
ploit the sequentiality in accesses common for such systems
and hide the increasing relative cost of disk I/O, existing
multi-level storage studies have focused mostly on cache re-
placement strategies. In this paper, we show that prefetch-
ing algorithms designed for single-level systems may have
their limitations magnified when applied to multi-level sys-
tems. Overly conservative prefetching will not be able to
effectively use the lower-level cache space, while overly
aggressive prefetching will be compounded across levels
and generate large amounts of wasted prefetch. We take
an innovative approach to this problem: rather than de-
signing a new, multi-level prefetching algorithm, we devel-
oped PreFetching-Coordinator (PFC), a hierarchy-aware
optimization applicable to any existing prefetching algo-
rithms. PFC does not require any application hints, a priori
knowledge on the application access pattern or the native
prefetching algorithm, or modification to the I/O interface.
Instead, it monitors the upper-level access patterns as well
as the lower-level cache status, and dynamically adjusts the
aggressiveness of the lower-level prefetching activities.

We evaluated PFC with extensive simulation study us-
ing a verified multi-level storage simulator, an accurate disk
simulator, and access traces with different access patterns.
Our results indicate that PFC dynamically controls lower-
level prefetching in reaction to multiple system and work-
load parameters, improving the overall system performance
in all 96 test cases. Working with four well-known existing
prefetching algorithms adopted in real systems, PFC ob-
tains an improvement of up to 35% to the average request
response time, with an average improvement of 14.6% over

∗Zhe Zhang and Kyuhyung Lee have contributed equally to this work.
†Department of Computer Science, North Carolina State University

zzhang3@ncsu.edu, ma@cs.ncsu.edu
‡Department of Computer Science, University of Illinois at Urbana-

Champaign {kyuhlee,yyzhou}@uiuc.edu
§Computer Science and Mathematics Division, Oak Ridge National

Laboratory

all cases.

1 Introduction
Motivation Today’s applications, commercial and scien-
tific alike, rely more and more on the ability to store,
share, and analyze large amounts of data. Yet with the
growing performance gap between I/O systems and proces-
sor/memory units, data storage and accesses are inevitably
becoming more bottleneck-prone. It has therefore become
more critical to efficiently utilize main memories available
in the system as buffer caches, through demand paging and
prefetching, two widely adopted techniques.

Meanwhile, as service-based (especially web-based) ap-
plications prevail, cache management frequently has to be
extended to multiple levels. For example, a web-based data
center will have large storage caches equipped at both the
front-end web servers (upper level) and the back-end stor-
age servers (lower level). Figure 1(a) gives a sample ar-
chitecture of such systems. How to effectively manage the
aggregate cache space and improve the overall system per-
formance has been studied extensively in the recent years.
However, existing studies have focused on the multi-level
caching problem [9, 21, 41, 42], while to our best knowl-
edge no research has targeted coordinating the prefetching
operations in a multi-level storage system. In contrast to the
relative lack of studies it receives, prefetching has a crucial
role on multi-level server systems. Many service applica-
tions hosted by such systems are read-intensive and possess
heavily sequential access patterns. Examples include com-
mercial or scientific data queries, web document process-
ing, and multimedia hosting/streaming. Such applications
benefit tremendously from file system prefetching.

In a multi-level system, prefetching is needed at each
level to hide the latency of fetching data blocks from the
lower layer. However, if prefetching is carried out indepen-
dently at each layer, the system will not be able to make
a coordinated use of the combined cache space. In partic-
ular, when a single-level prefetching algorithm is too con-
servative or too aggressive for a certain application work-
load, this mismatch will be magnified when multiple levels

1



L1 cache Network

L2 cache Disk

L1 prefetching

L2 prefetching

Application

(a) Multi-level stor-
age system architec-
ture

1 R R R R

i ii iii

R R R R… …2 3 4 5 6

(b) Application access sequence. Dark blocks indicate sequen-
tial accesses and light ones random.

(i) L1 fetches 1~4; 
L2 fetches 1~8

(iii) At end of sequential 
stream, 7~24 are wasted

(ii) L2 has evicted block 5 
when L1 needs it

4 65 7 8

321 4

6 RR87 20 24232221

3 4 R R21 875 6 9 10 1211R R L1

L2

(c) Cache status snapshots corresponding to the three access points indicated in (b)

Figure 1. Sample architecture and behavior of uncoordinated multi-level prefetching

of prefetching are stacked up together.

On one hand, a conservative prefetching scheme, when
applied to the lower level, may not be able to effectively
use the cache space to hide I/O costs. Other researchers
have recently observed that due to the low temporal locality
at the lower level caused by higher-level caching, as well
as the increasingly bottleneck-prone storage device perfor-
mance, aggressive lower-level prefetching is especially ap-
pealing [28]. The lower level cache space may be better uti-
lized when used as a staging area for higher levels to hide
disk I/O costs, than as a backing store for demand paging.
Also, aggressive lower-level prefetching helps handle the
larger and more bursty requests caused by the batching ef-
fect of upper-level prefetching. Conservative prefetching
at the upper level may use a small, fixed prefetch depth,
or grow the prefetching depth very slowly. This in turn
gives the lower level less encouragement for prefetching
even with highly sequential accesses. Therefore, a slightly
conservative single-level prefetching algorithm may need to
be speeded up a lot when applied to multiple levels.

On the other hand, as people realize the growing appeal
of prefetching [33], more aggressive prefetching strategies
are likely to be adopted at each level. When multiple such
uncoordinated software layers are stacked together, there is
a compounding effect causing overly aggressive prefetch-
ing, which may significantly increase the burden of the stor-
age devices, waste both the cache space and the I/O band-
width, and degrade the application performance. Known
problems associated with aggressive prefetching will be in-
tensified when a system is expanded into multiple layers
with uncoordinated prefetching: namely cache pollution
(too eager prefetching taking space from more useful data)
and prefetch wastage (prefetched data being evicted before
they are used) [19]. Also, aggressive multi-level prefetching
may accumulate many prefetched data blocks in the lower
level cache even after such blocks have been passed up to
the upper level, which is especially undesirable when the ac-
cess pattern is mostly random or a mixture of sequential and
random accesses. Finally, these problems related to aggres-
sive prefetching can further be aggravated when the system

employs a n-to-1 or n-to-m(n > m) mapping between the
clients and servers, requiring each server’s space and band-
width resources to be split between multiple clients.

Figures 1(b) and 1(c) demonstrate the problems with
uncoordinated multi-level prefetching, using an adaptive
prefetching depth, which increases by 1 at each sequen-
tial hit. In this example, the upper level cache is larger
than the lower level one. After access point (i) the upper-
level will prefetch blocks 3-4, triggering the lower level to
prefetch blocks 5-8. With a limited lower-level cache size,
prefetched block 5 will be flushed out of cache at point (ii)
by the accesses of two random blocks. Therefore when
block 5 is needed by the upper level, both levels will suffer
a miss. Besides, after both access points (i) and (iii), redun-
dant blocks are cached in both levels, while prefetched data
have a lower chance of being requested again, at least at
the lower level. In addition, the unnecessary prefetching of
blocks 7-12 at the end of the sequential run will be extended
to blocks 13-24 at the lower level.

Contributions The above example illustrates the defi-
ciencies of multi-level independent prefetching, by show-
ing one instance of overly aggressive prefetching caused by
the amplifying effect from both leverls performing adaptive
prefetching. In this research, we adopt a novel approach
to address the issue of coordinating prefetching aggressive-
ness across multiple levels of caches. Rather than design-
ing new, coordinated multi-level prefetching algorithms, we
look into how to extend existing single-level algorithms to
work in a coordinated manner in multi-level systems. This
is motivated by the fact that different prefetching algorithms
are chosen by real-world systems based on the expected ap-
plication access pattern, and the complexity of multi-level
servers or data centers is growing. The coordination com-
ponent built with this approach, called PreFetching Coor-
dinator (PFC) will act like an “extension cord” that con-
nects the existing prefetching algorithms at different levels,
each working on top of an existing cache management strat-
egy. Further, PFC enables coordinated prefetching across
more than two levels, and potentially the stacking of differ-
ent prefetching algorithms. Finally, PFC does not require



any application hints or a-priori knowledge on applications’
access pattern.

The main idea behind PFC’s operation is to place an
immediate layer of intelligence between the upper- and
lower-level strategies for prefetching and cache replace-
ment. By observing the upper-level requests and the lower-
level prefetching behavior, PFC detects whether the current
prefetching is too aggressive or too conservative, and tries to
refrain or boost the lower-level prefetching activity, while at
the same time avoiding caching prefetched data redundantly
at multiple levels.

We designed a novel PFC algorithm that acts as a mid-
dleman between two adjacent levels of caching/prefetching,
and is independent of the specific prefetching or replace-
ment algorithms adopted at each level. PFC is adaptive,
transparent to applications, and maintains the I/O interface
between the multiple levels.

We evaluated PFC with a verified multi-level simulator,
along with an accurate disk simulator, using multiple stor-
age system and application access traces. In our simulator
we implemented four well known prefetching algorithms
used in real systems: P-Block ReadAhead (RA), Linux ker-
nel prefetching, SARC, and AMP. Our experiments show
that for all the algorithms, when they are applied to a two-
level storage system, the addition of PFC can considerably
improve the overall system performance (in terms of aver-
age request response time), by up to 35% and on average
14.6%. In particular, PFC is able to regulate the prefetch-
ing aggressiveness and achieve a performance improvement
for all types of trace workloads: highly sequential, highly
random, and mixed patterns. Besides lowering the request
processing time, PFC enhances the overall system resource
utilization by reducing redundant caching and controlling
wasted prefetch when cache space becomes tight.

2 Background

2.1 Related Work
Prefetching Prefetching techniques for single-level sys-
tems have been widely studied [38]. Many prefetching
algorithms were proposed to answer the key questions of
“what to prefetch” and “when to prefetch”. Gill et al. re-
cently gave a quite comprehensive classification of exist-
ing prefetching approaches [19]. It indicates that although
many sophisticated algorithms have been proposed to per-
form stride-based [17, 24, 12, 1] or history-based prefetch-
ing [27] to “guess” the best blocks to prefetch next, most
commercial storage systems adopt simple schemes such
as sequential prefetching. The reason is that sequential
prefetching is able to provide good long-term prefetching
accuracy for diverse workloads, without imposing the cost
of extra I/O involved in maintaining and using the access

history. While PFC is algorithm-independent, our discus-
sion and evaluation are focused on sequential prefetching.

Although there are a wealth of studies on multi-layer
cache management, existing work on multi-layer prefetch-
ing is quite limited. Research efforts that we are aware
of are on multi-layer hardware prefetching for the CPU
caches [6, 16], which use fixed, uncoordinated strategies
at different cache levels. The DiskSeen [15] technique ex-
ploits knowledge of on-disk data layout to direct efficient
file-level prefetching. The most related work to ours is
STEP [28], which is motivated by the need to perform ag-
gressive lower-level prefetching. STEP accurately detects
sequential access patterns as well as disk thrashing patterns,
and makes prefetching decisions accordingly. Like PFC,
STEP optimizes the lower-level prefetching behavior with
the awareness of upper-level prefetching or caching. How-
ever, it promotes aggressive lower-level prefetching, while
PFC may moderate the lower-level activity both ways. In
addition, STEP is itself a stand-alone lower-level prefetch-
ing algorithm, while PFC is a portable, generic optimization
that can be applied to any single-level prefetching/caching
algorithms. Finally, STEP was shown to improve the
multi-level system performance significantly with sequen-
tial workloads while having no impact on handling random
workloads. In contrast, our results show PFC brings consid-
erable performance gain to both types of workloads.

Some other studies on multi-level systems utilize appli-
cation hints to direct prefetching [7, 34]. PFC, on the other
hand, does not require such hints or modification to the
inter-level I/O interfaces.

Space coordination between prefetching and demand
paging Besides the problems of “what to prefetch” and
“when to prefetch”, another important issue in prefetching
is how to allocate the shared memory cache space among
prefetched and demand paged data. There are a number
of previous studies about managing prefetched data in a
cache shared with demand paged data [5, 23, 32, 26]. Sev-
eral other solutions alleviate the problem of cache pollu-
tion [35, 31] by carefully limiting the space that prefetched
data can use. As a recent example, the SARC algorithm [20]
uses two separate LRU queues for sequential and random
data respectively, and adjusts their sizes according to the ac-
cess pattern. As we show in this paper, PFC can seamlessly
work together with such techniques.

Multi-level cache management There have been many
research studies in the contexts of demand paging and gen-
eral cache management for multi-level storage systems.
Previous research in different environments has noticed the
weakness of LRU-like algorithms for lower level buffer
cache in a hierarchy [14, 30] and pointed out feasible so-
lutions for different systems [4, 40, 43]. This group of work
focuses on improving the lower-level caching performance
in reaction to the upper-level caching effect.



There has also been work on collaborative caching
across multiple layers of storage. Chen et al. categorized
existing work on multi-level buffer cache collaboration into
two paradigms [8]: hierarchy-aware caching [9, 2, 43]
and aggressively-collaborative caching [13, 41, 21]. The
authors indicate that although aggressively-collaborative
caching utilizes the aggregate buffer cache space more suf-
ficiently, hierarchy-aware caching has the advantage of be-
ing transparent to the storage client software. Their empir-
ical evaluation based on typical commercial storage system
workloads reveals that if local optimizations are properly
applied, the performance gain of aggressively-collaborative
caching over hierarchy-aware caching is actually very lim-
ited. PFC can be viewed as a hierarchy-aware strategy for
multi-level prefetching.

One category of collaborative cache management partic-
ularly related to our approach is exclusive caching, using
mechanisms such as a DEMOTE operation [41], eviction-
based data placement [9], or having the client side keeping
track of the server cache status [2]. For single-level sys-
tems, the Free-behind technique [29], used in Solaris, tries
to evict sequentially accessed blocks. In a sense, PFC im-
plicitly performs exclusive caching by selectively bypassing
the lower-level cache. Like the above approaches, this by-
passing helps preserve the combined cache space. However,
PFC is unique by performing prefetching-aware bypassing
to actively throttle the prefetching aggressiveness.

Improving the cache hit ratio has traditionally been the
goal of cache management research. In a more recent work,
however, Yadgar et al. introduce a new algorithm called
Karma [42], whose optimization goal is the overall I/O cost
instead of hit ratios. Karma is shown to outperform existing
multi-level caching solutions given certain I/O hints. Like
Karma, PFC tries to minimize the overall I/O time. How-
ever, instead of using hints, PFC works through a feedback
system based on the dynamic interplay of application access
pattern, cache space distribution, and hardware speed.

Finally, most hierarchy-aware multi-level cache manage-
ment schemes [9, 2, 43] also accommodate multi-client set-
tings. The discussion and evaluation of this paper is lim-
ited to single-client scenarios (which indeed represent a sig-
nificant portion of real-world multi-level storage environ-
ments [8]). However, PFC can be easily extended to work
with both multi-client systems and multi-stream workloads,
since it takes a light-weight approach by adjusting prefetch-
ing parameters rather than explicitly performing cross-layer
data placement.

2.2 Sequential Prefetching Overview and
Sample Algorithms

While there have been more sophisticated strategies pro-
posed, such as history-based prefetching [22, 39, 25], our
discussion focuses on sequential prefetching, where a set

of contiguous blocks beyond the ones requested will be
prefetched. Sequential prefetching is used by most commer-
cial systems as it achieves long-term prefetching effective-
ness without making assumptions on the application access
pattern or incurring extra I/O in making predictions [19].
For sequential prefetching, there are two common deci-
sions made by a prefetching algorithm: “how much to
prefetch” and “when to prefetch”. Many prefetching algo-
rithms used in actual systems today are adaptive and adjust
the prefetch degree (p) dynamically according to the access
pattern observed, prefetching farther beyond the requested
blocks if the sequential access pattern is confirmed by hits
on prefetched blocks. Regarding the timing of prefetching
operations, synchronous algorithms issue a prefetch request
only when there is a cache miss, while asynchronous algo-
rithms generally use a trigger distance (g) to start prefetch-
ing when there is a hit: the next batch of blocks will be
prefetched when the block with a distance of g from the
end of the set of prefetched blocks is accessed. Some asyn-
chronous prefetching algorithms, such as RA and Linux (to
be introduced below), do not have a trigger distance, but
trigger prefetching on each hit and each miss.

Below we briefly describe several representative
prefetching algorithms that are used in our study. We im-
plemented these algorithms in our simulator and evaluated
PFC’s impact on their two-level performance.

RA The P-block Readahead prefetching algorithm (RA)
is an extension of the OBL (One-Block Lookahead) [36] al-
gorithm, by increasing the prefetch degree p from 1 to P . P
can be either fixed or adaptive [11, 37]. In our experiments,
we used a fixed degree of P = 4. Thus RA has a relatively
conservative behavior compared with other algorithms for
sequential workloads, but a rather aggressive behavior for
random workloads.

Linux prefetching The Linux prefetching algorithm
maintains for each file a read-ahead group, which contains
all the blocks prefetched on the current file access and a
read-ahead window, which contains both the current and
the previous read-ahead groups. The algorithm determines
that the file is accessed sequentially if the next access is
within the read-ahead window and will prefetch another
group with twice the size as the current read-ahead group.
This way, sequential accesses will double the prefetch de-
gree, until the read-ahead group size reaches a pre-defined
maximum value, set to be 32 blocks in 2.6.x kernels. If the
next access is outside the read-ahead window, the algorithm
will resort to conservative prefetching and only prefetch
a minimum number of blocks (by default 3) after the on-
demand block.

Is has been shown that the Linux kernel prefetching
has significant impact on buffer cache replacement algo-
rithms [3]. Among the prefetching algorithms we have ex-
perimented with, the Linux kernel prefetching algorithm



is the most aggressive one, with an exponentially growing
prefetching degree, which is aggravated when performed at
two or more levels. In addition, compared to other algo-
rithms we found that Linux prefetching obtains consider-
able performance gain by maintaining per-file prefetching
parameters.

SARC SARC [20] was developed at IBM and deployed
in the IBM flagship storage controllers DS6000/8000. Un-
like the other algorithms we examined, SARC is actually a
combined algorithm doing both prefetching and cache man-
agement. It uses a fixed prefetch degree p and a fixed trig-
ger distance g. To handle mixed workloads that contain
both sequential and random accesses, SARC maintains two
LRU queues, namely SEQ and RANDOM, for sequential
and random data, respectively. It optimizes the use of the
fixed cache space by equalizing the marginal utility of the
two queues.

AMP The AMP algorithm [19] is proposed recently to co-
ordinate prefetching in multiple sequential access streams
and has been deployed by the new IBM DS8000 system re-
leased in Oct. 2007. It adjusts both p and g dynamically
and coordinates the prefetching of multiple access streams.
The design of AMP was based on the observation that the
cache space is best utilized when the prefetch degree for
stream i is equal to the product of the request rate of stream
i and the average cache life. AMP increases pi when the
sequential access pattern is confirmed and reduces pi when
it detects overly aggressive prefetching (from the eviction
of prefetched blocks that have not been accessed). The trig-
ger distance gi is reduced when pi is reduced, and increased
when the prefetched block is found to be waited on by an
on-demand request, which indicates that the prefetching has
not been triggered early enough.

3 Hierarchy-aware Prefetching with PFC

3.1 PFC Architecture

Although PFC is designed to be able to apply to systems
with more than two levels, we focus on two-level systems (a
common architecture in today’s multi-level storage systems
and data centers) in our discussion and experiments. For
brevity, we refer to the upper (client) level as L1 and the
lower (server) level as L2, for the rest of the paper.

As mentioned in Section 1, the multi-level prefetching
problem presents somewhat conflicting demands. The goal
of PFC is to moderate the prefetching process to achieve
a desired level of aggressiveness in order to improve the
overall system performance and resource utilization. The
major design question here is “where should PFC reside”,
L1, L2, or both? We decide to place PFC in L2, as an
intermediate layer between the client and the server’s na-
tive prefetching and cache management, for a more portable

and algorithm-independent design. A previous study [8] on
multi-level cache management reveals that it is not worth-
while to sacrifice the transparency of the L1/L2 interface to
add “aggressively-collaborative” mechanisms at the client
side. In contrast, “hierarchy-aware” mechanisms sitting
at the server side that leverage the knowledge gathered
on the upper-level cache to perform intelligent cache re-
placement are more feasible and can achieve similar per-
formance gains. We believe this also applies to the multi-
level prefetching scenario, and our empirical results from
implementing and evaluating a client-side prefetching coor-
dination scheme indicate the same. Due to the space limit,
in this paper we only discuss our proposed server-side PFC
design.

Disk

Client node

L1 buffer cache

Network

Server node

P
F
C

L2 buffer cache

L2 cache 
management & 

prefetching

I/O scheduler

L1 cache 
management & 

prefetching

Figure 2. Software architecture for two-level
systems using PFC.

Figure 2 illustrates the location and interfaces of the PFC
module, and give an overview of how it functions (with
more details and the algorithm discussed in 3.2). PFC re-
sides at the server side as an intermediate gateway between
the client node and the server-side I/O request processing.
It intercepts the client requests (which may have included
client-side prefetching), and relay data blocks between the
client interface and the L2 I/O stack. It may query the L2
cache status and find out whether a certain block is cur-
rently cached. In general, PFC is aware of the existence
of caching/prefetching both above and beneath the L1/L2
interface, but unaware of the actual strategies used.

Based on the observed L1 requests and the L2 cache in-
ventory regarding requested blocks, PFC detects whether
the L2 prefetching may be too conservative or too aggres-
sive. For example, it can infer the aggressiveness of L1
prefetching by looking at the request size, or that of L2
prefetching by checking how many blocks beyond those ac-
cessed by L1 have been stocked in the L2 cache. Depending
on the situation, PFC may take one or both of the following
two actions:

• bypass: bypassing the L2 cache and directly feed some
or all of the requested blocks to L1. PFC does this
by interacting directly with the L2 I/O scheduler, or
drawing cached blocks from the L2 cache without no-
tifying the L2 native caching/prefetching unit of a hit.



1 2 3 4 5

4 5 6 7 8

4 5 6 7 8

PFC

Request
from L1

Request
to L2

Bypass blocks Readmore blocks

9 1110
Readmore queue

21 3

Figure 3. Sample PFC actions on L1 requests

This action serves two purposes: 1) slowing down
L2 prefetching by “faking” an L1 access stream with
weakened sequential pattern, and 2) performing exclu-
sive caching on sequentially accessed blocks by avoid-
ing caching them in L2.

• readmore: appending additional blocks to prefetch to
the original L1 request. This action speeds up L2
prefetching when PFC decides the native L2 strategy
is not aggressive enough.

3.2 PFC Algorithm

The goal of the PFC algorithm is to adaptively select a
proper degree of aggressiveness in prefetching and make ef-
ficient use of L2 cache space. As mentioned in the previous
section, PFC accomplishes this by activating one or both of
two somewhat counter-acting operations: bypass and read-
more. Figure 3 illustrates possible actions on a sample re-
quest issued by L1. In this example, the original request
contains consecutive blocks 1-5. PFC may decide to bypass
the first three blocks, and perform additional prefetching of
its own for “readmore” blocks 6-8. This way, the request for
blocks 1-3 are directly issued by PFC to the L2 I/O sched-
uler, while the L2 native caching/prefetching unit sees an
altered request for blocks 4-8.

Algorithm 1: PFC Process Req(requ = [startu, endu])

req size = endu − startu + 1;
avg req size = average request size so far.
/* If req size is larger than two times of avg req size,
exclude it from calculation of avg req size. */
rm size = MAX(req size, avg req size);
PFC Set Param(requ);

startpfc = startu + bypass length;
endpfc = endu + readmore length;
process request [startu, startpfc − 1] directly;
forward request [startpfc, endpfc] to native L2 processing;

/*Insert new items into queues*/
if bypass queue or readmore queue is full then

evict oldest items until required space is available;
insert [startu, startpfc − 1] into bypass queue;
endrm = endpfc + rm size;
insert [endpfc, endrm] into readmore queue;

Note that PFC’s bypass action intercepts L1 requests
from reaching L2, but may still access L2 cached data. In
this example, blocks 1-3 will not be requested through the
native L2 caching/prefetching modules. However, if some
of these blocks are already cached in L2, PFC will serve
L1 by reading them from the L2 cache rather than going to
the disk. This way, the L2 cache may get a “silent hit” not
registered with the native caching/prefetching algorithm.

The key decisions the PFC algorithm has to make, of
course, are “when” and “how much” to perform bypass
and/or readmore. Intuitively, the bypass blocks should be
a prefix of the original request, as they are expected to be
accessed first and ought to be cached closer to the applica-
tion. At the same time, the readmore blocks should be the
blocks immediately following the original request. The re-
maining challenge is to determine the trigger condition and
the degree for each action.

To perform such dynamic decision-making, PFC man-
ages two queues, the bypass queue and the readmore queue.
These queues do not store real data blocks, but block
numbers. Both are initially empty, and maintained with
the LRU policy (the least recently inserted or re-accessed
blocks are evicted when the queue is full). In our ex-
periments, we set the maximum size of both queues to
10% of the L2 cache size. The queues help PFC detect
the need to increase/decrease the bypass or readmore lev-
els, by setting the key PFC parameters bypass length and
readmore length, which are both initialized as 0.

The PFC request processing procedure is given in Al-
gorithm 1, which takes the original L1 request, computes
the PFC parameters by calling subroutine PFC Set Param()
(Algorithm 2), and processes the request with optional by-
pass and readmore actions accordingly. Finally, some of
the requested blocks are added to the appropriate queue if
they are not already there. Here PFC treats the two queues
differently. The bypassed blocks are added to the bypass
queue. However for the readmore queue, rather than adding
the readmore blocks PFC appended to the L1 request, it
adds blocks in a readmore window following those read-
more blocks to the readmore queue, since the purpose of
this queue is to detect if accesses to blocks in it could be
hits if readmore length were larger. The size of this win-
dow is determined by a parameter rm size, calculated in
Algorithm 1 from the current and average request sizes.

Algorithm 2 describes how PFC set bypass length and
readmore length. Basically, PFC monitors the request
pattern, as well as the hit status of requested blocks in the L2
cache and both PFC queues, to determine whether it needs
to increase/decrease the bypass/readmore activities.

One upfront step is to check whether the L1/L2 prefetch-
ing is already quite aggressive. PFC considers the for-
mer true if the L1 request appears large (longer than half
of the average L1 request size), and the latter true if



Algorithm 2: PFC Set Param(requ = [startu, endu])

hit cache = hit bypass = hit readmore = false;

/* Check against aggressive L1/L2 prefetching */
if ((req size > avg req size) and (L2 cache is full)) then

readmore length = 0;
endif
if ([endu, endu + req size] ∈ cache) then

bypass length = req size;
readmore length = 0;
return;

endif

/* Check hit status of L2 cache and PFC queues */
for startu ≤ x ≤ endu do

if x ∈ cache then hit cache = true;
if x ∈ bypass queue then hit bypass = true;
if x ∈ readmore queue then hit readmore = true;

endfor

/* Adjust PFC parameters */
if !hit bypass then bypass length + +;
if !hit cache then

if hit bypass then bypass length −−;
if hit readmore then

readmore length = rm size;
else readmore length = 0;

endif

as many blocks as requested immediately beyond the re-
quested range are already stocked up in the L2 cache. In
these cases, PFC will choose to bypass the entire L1 re-
quest, and set readmore length to 0.

If neither condition above is satisfied, PFC will perform
more detailed checking to see whether any blocks requested
are found in the L2 cache, the bypass queue, or the read-
more queue. If none of the blocks have been bypassed
earlier, PFC assume the L1 cache can store more and in-
creases bypass length. Otherwise, if accesses to previ-
ously bypassed blocks are misses in the L2 cache, PFC in-
fers that the L1 cache space is tight and the blocks have been
evicted prematurely, thus bypassing them was a wrong de-
cision. In reaction, it will reduce bypass length. The treat-
ment of readmore length is coarser: it will be increased to
rm size if the sequential access pattern anticipated is con-
firmed by having a hit in the readmore queue, and reset to 0
if otherwise.

From the algorithms given, it can be observed that ran-
dom accesses are likely to be bypassed, except at the begin-
ning of the run when bypass length is zero or very small.
This is desirable since the temporal locality of L2 accesses
is expected to be low. A related issue is that in our current
PFC implementation, the lower level maintains a single set
of parameters. However, it is easy to extend PFC to main-
tain per-client or per-file contexts, in order to better handle

multiple access streams.

4 Performance Evaluation

4.1 Simulator Overview

The simulator used in our trace-driven evaluation is ex-
tended from an existing two-level storage simulator that was
used in several previous studies on multi-level cache man-
agement [43, 9, 8, 45, 46, 44], which has been validated
against real systems and released to public.

We extended this base simulator in two areas. First, we
added prefetching to both levels and implemented several
prefetching algorithms, as well as our proposed optimiza-
tion. Second, we made the simulator time-aware. The base
simulator was designed to study cache replacement algo-
rithms, for which it suffices to only consider the access se-
quence and ignore the actual timing of the requests. As ex-
isting research suggested [3], when prefetching is taken into
the picture, one should examine the overall system perfor-
mance rather than just on the cache hit ratios. To calculate
the disk I/O time, we connected our simulator to the widely
used disk simulator DiskSim [18]. We also implemented in
the simulator an I/O scheduler that imitates I/O scheduling
in Linux kernel 2.6. Finally, with the assumption that the
network interconnection between L1 and L2 is unlikely the
system bottleneck, we used a simple model [10] to com-
pute the communication cost as α + β × message size,
where α is a fixed startup latency and β determines the size-
dependent cost. In our experiments, we set α as 6 ms and
β as 0.03 ms/page, both measured through tests of TCP/IP
data transfers between two computers in a LAN.

In this paper, we assume that the system is composed of
one upper level cache, one lower level cache, and a disk,
a valid setting for many real multi-level systems [8]. How-
ever, our simulator can be easily expanded both horizontally
(to include multiple nodes at each level) and vertically (to
add more levels), by replicating nodes and disks.

4.2 Test Workloads

Our simulation uses three large real-system traces, rep-
resenting a variety of typical multi-level system workloads
and carrying different degrees of randomness in accesses.
Below we briefly describe these test traces.

SPC traces SPC1 is a widely used benchmark collection
provided by the Storage Performance Council, that has been
adopted by many previous studies on prefetching and multi-
level cache management [19, 20, 28]. We selected two
workloads from SPC, “OLTP”, traces from OLTP appli-
cations running at a large financial institution, and “Web”,

1http://traces.cs.umass.edu/index.php/Storage/Storage



websearch traces from a popular search engine. The OLTP
trace is the most sequential one in our test workloads, with
only 11% of requests being random accesses. The Web
trace, on the other hand, is the least sequential, with 74%
of accesses random.

As our base simulator is not compatible with the newer
version of DiskSim, we used a previous version (DiskSim
2), which has been used in several recent studies [27, 44].
The problem is DiskSim2 supports only older disk models
with limited capacity. For example, the largest disk capacity
allowed by DiskSim 2 is 9.1GB (with the Seagate Cheetah
9LP hard disk model used in our experiments). Due to this
limitation, also to control the total simulation time, we used
only the first 10GB of data requests from the SPC traces.
That accounts for 10.8% of requests from the OLTP and
31.3% from the Web trace, resulting in a total footprint of
529MB and 8392MB, respectively.

Purdue Multi trace We also used one of the “Multi”
traces collected by researchers at Purdue university in
2005 [3], from the concurrent execution of three applica-
tions: csscope, gcc, and viewperf. This trace accesses a total
of 12,514 files, with a combined footprint of 792MB. This is
a trace with mixed access patterns, with 25% of accesses be-
ing random. Unlike the SPC traces, where each trace record
bears an application request timestamp, the Purdue traces
were collected from running the workload benchmarks at
the throughput allowed in a test system. We followed the
way these traces were used in the Purdue researchers’ work,
by issuing the requests in a synchronous manner (only issu-
ing the next request when the current one completes).

4.3 Evaluation Results
Overall performance of PFC We evaluated PFC on the
three trace workloads described above and the four exist-
ing prefetching algorithms discussed in Section 2.2. Each
algorithm is applied to both L1 and L2. For every trace-
algorithm combination, we tested different cache settings.
The L1 cache size is set according to the trace footprint,
with a “high setting” (H) that amounts to 5% of the total
trace footprint, and a “low setting” (L) to 1%.2 When the
L1 cache size is fixed to H or L, we varied the L2 cache
size by adjusting the L2:L1 size ratio, using four configu-
rations: 200%, 100%, 10%, and 5%. This simulates differ-
ent L2 base configuration, as well as the scenario where a
single server node is simultaneously serving multiple client
request streams. At both levels, LRU is used as the cache
replacement policy, except for SARC, which comes with its
own cache management strategy. Finally, all the discussion

2The L1 cache size may seem quite small with moderate trace sizes,
compared to today’s server configuration. However, such cache sizes are
reasonable for analyzing cache behaviors, considering the increasing ap-
plication concurrency on each node and the relatively small disk size used
in this version of DiskSim.

on hit ratio in this section is regarding the L2 cache, as we
found PFC, as a server-side optimization, has little impact
on the L1 cache hit ratio.

To compare PFC with non-prefetching-aware exclusive
caching, we implemented DU [8], which marks blocks that
have just been sent to L1 with the highest priority for evic-
tion, assuming those blocks are to be cached by L1. Like
PFC, DU is an L2 local optimization aware of the existence
of upper-level cache activities.

Figure 4 shows the results of the tests using the “high”
L1 cache size setting. Since PFC is designed to moder-
ate multi-level prefetching in storage systems, we consider
the most important metrics to be 1) the overall system per-
formance (in terms of the average request response time)
and 2) the unused prefetch (in terms of the total number of
blocks that are prefetched but not accessed when evicted
or till the end of a test). The three figures in the left col-
umn plot the average response time, while the three in the
right one plot the unused prefetch in log-scale. The “low”
L1 cache setting tests yield similar results, and we omit the
figures due to the space limit.

Trace Cache Prefetch Algorithm
size AMP SARC RA Linux

200%-H 13.98% 8.49% 31.53% 5.23%
OLTP 200%-L 9.77% 10.88% 35.77% 9.50%

5%-H 10.94% 6.74% 34.87% 5.26%
5%-L 7.80% 11.41% 24.87% 15.10%

200%-H 14.66% 0.70% 14.83% 18.23%
Web 200%-L 12.54% 26.43% 16.42% 29.28%

search 5%-H 6.56% 19.21% 15.57% 27.20%
5%-L 5.76% 20.59% 14.80% 27.12%

200%-H 5.65% 11.13% 24.85% 5.03%
Multi 200%-L 5.43% 8.29% 25.22% 5.18%

5%-H 5.98% 11.30% 25.61% 5.52%
5%-L 5.86% 10.39% 25.39% 5.87%

Table 1. Summary of PFC’s improvement on
the system overall performance.

PFC is shown to improve the average response time for
all 96 test cases. The improvement is up to 35%, with an av-
erage of 14.6% over all cases. For the majority of the cases
(around 77%), it also outperforms DU, which optimizes L2
space usage by evicting blocks passed to L1, but does not
actively adjust the aggressiveness of L2 prefetching. PFC,
on the other hand, may make the L2 prefetching more ag-
gressive or more conservative based on the access pattern
and cache status.

As can be seen from the three charts in the right column
of Figure 4, when the L2 cache size is large and the access
pattern is highly sequential (OLTP, 200% and 100% L2:L1
cache ratios), PFC will actually aggravate L2 prefetching,
resulting in higher numbers of unused prefetch. However,
the overall performance is improved due to better L2 hit ra-



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

LinuxRASARCAMPLinuxRASARCAMPLinuxRASARCAMPLinuxRASARCAMPA
v
e
r
a
g
e
 
r
e
s
p
o
n
s
e
 
t
i
m
e

L2 = 200% L1 L2 = L1 L2 = 10% L1 L2 = 5% L1

Original
DU

PFC

(a) Average response time (OLTP, L1 = “H”)

1e+06

3e+04

4096

512

64

8

1
LinuxRASARCAMPLinuxRASARCAMPLinuxRASARCAMPLinuxRASARCAMP

U
n
u
s
e
d
 
p
r
e
f
e
t
c
h
e
d
 
b
l
o
c
k
s

L2 = 200% L1 L2 = L1 L2 = 10% L1 L2 = 5% L1

Original
DU

PFC

(b) Unused L2 prefetch (OLTP, L1 = “H”)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

LinuxRASARCAMPLinuxRASARCAMPLinuxRASARCAMPLinuxRASARCAMPA
v
e
r
a
g
e
 
r
e
s
p
o
n
s
e
 
t
i
m
e

L2 = 200% L1 L2 = L1 L2 = 10% L1 L2 = 5% L1

Original
DU

PFC

(c) Average response time (Web, L1 = “H”)

1e+06

3e+04

4096

512

64

8

1
LinuxRASARCAMPLinuxRASARCAMPLinuxRASARCAMPLinuxRASARCAMP

U
n
u
s
e
d
 
p
r
e
f
e
t
c
h
e
d
 
b
l
o
c
k
s

L2 = 200% L1 L2 = L1 L2 = 10% L1 L2 = 5% L1

Original
DU

PFC

(d) Unused L2 prefetch (Web, L1 = “H”)

 0

 1

 2

 3

 4

 5

LinuxRASARCAMPLinuxRASARCAMPLinuxRASARCAMPLinuxRASARCAMPA
v
e
r
a
g
e
 
r
e
s
p
o
n
s
e
 
t
i
m
e

L2 = 200% L1 L2 = L1 L2 = 10% L1 L2 = 5% L1

Original
DU

PFC

(e) Average response time (Multi, L1 = “H”)

3e+07

1e+06

3e+04

4096

512

64

8

1
LinuxRASARCAMPLinuxRASARCAMPLinuxRASARCAMPLinuxRASARCAMP

U
n
u
s
e
d
 
p
r
e
f
e
t
c
h
e
d
 
b
l
o
c
k
s

L2 = 200% L1 L2 = L1 L2 = 10% L1 L2 = 5% L1

Original
DU

PFC

(f) Unused L2 prefetch (Multi, L1 = “H”)

Figure 4. Impact of PFC on overall performance and unused prefetches. Figures in the right column
use log-scale at the y-axis.

tio, and the unused prefetch has a lower impact on the cache
space utilization as there are not enough random blocks to
compete for the L2 cache space. When the L2 cache size
is relatively small, or when the accesses become more ran-
dom (Web, 10% and 5% size ratios), in most cases PFC will
slow down the L2 prefetching and reduce unused prefetch.
In many of those cases, the L2 hit ratio is worse than in the
original case, but PFC helps improve the average response
time by reducing the number of disk requests and/or mak-
ing shorter requests. Both of these help to lighten the disk
workload and provide faster response to the application re-
quests.

One final note on Figure 4 is that PFC appears to main-
tain the relative performance of algorithms under most cir-
cumstances. This is appealing as PFC is intended to extend
existing single-level prefetching algorithms found suitable
for certain workloads to multi-level systems.

Table 1 summarizes the improvement on the average re-
quest response time with both the “high” and “low” L1
cache size settings. We can see that the most significant im-
provement comes from the RA tests (for all traces), where
PFC’s heuristics adds to the intelligence of the originally
static RA algorithm. Also noticeable are the Linux tests

with Web traces, where PFC improves performance signif-
icantly by regulating the L2 prefetching to avoid prefetch-
ing too much when two levels of aggressive prefetching are
compounded. However, even with Linux, PFC may decide
to prefetch more aggressively at L2, such as in the cases of
OLTP, with “H” L1 cache setting and 200%/100% L2:L1
cache size ratios. In such cases, PFC generates more un-
used L2 prefetch, but improves the response time by over
5%. PFC also enhances performance considerably with the
SARC and RA algorithms. For OLTP and large cache con-
figurations, PFC makes the L2 prefetching more aggressive
while for the other cases, it will suppress L2 prefetching.
For random or mixed traces like Web or Multi, the reduced
prefetching also translates to better L2 space utilization for
random blocks, in addition to reduced I/O workload. In
summary, PFC is able to make flexible, dynamic decisions,
speeding up L2 prefetching in 9 test cases and slowing it
down in 87 (collected from information not shown in the
table).

Case studies To take a more detailed view into PFC’s in-
teraction with the native prefetching algorithms, in Figure 5
we plotted additional metrics for two test cases, where PFC
obtained the most and the least performance gain (35% and



-60

-40

-20

 0

 20

 40

 60

 80

 100

Disk req. amt.Disk req. #Unused prefetchL2 Hit ratioAvg. resp. time

P
e
r
c
e
n
t
a
g
e
 
o
f
 
i
m
p
r
o
v
e
m
e
n
t

(a) Best case (35%): OLTP/RA/L/100%

-60

-40

-20

 0

 20

 40

 60

 80

 100

Disk req. amt.Disk req. #Unused prefetchL2 Hit ratioAvg. resp. time

P
e
r
c
e
n
t
a
g
e
 
o
f
 
i
m
p
r
o
v
e
m
e
n
t

(b) Worst case (0.7%): Web/SARC/H/200%

Figure 5. Case studies for tests where PFC obtained best and worst performance gain

 0

 20

 40

 60

 80

 100

LinuxRASARCAMPLinuxRASARCAMPLinuxRASARCAMP

H
i
t
 
r
a
t
i
o OLTP

Web

Multi

Original
PFC

Figure 6. Average L2 cache hit ratio

0.7% improvement on the average response time). These
metrics include the L2 hit ratio, the total number of disk
requests, and the total amount of disk I/O. For both cases,
PFC decides to make the L2 prefetching more aggressive,
and as a result, the L2 unused prefetch is increased, so is
the L2 cache hit ratio. However, the overall performance is
impacted in quite different ways.

For the best case (Fig. 5(a)), a sequential trace like OLTP
has already caused a high L2 hit ratio (88.9%). But our
readmore queue is still able to detect that the RA algo-
rithm is not aggressive enough to catch up with the access
rate. Therefore it adds readmore blocks and brings a 5.5%
improvement in hit ratio which translates to a 35% improve-
ment in response time. Fortunately most readmore blocks
are used because of the sequential nature of the OLTP trace,
so the amount of unused prefetch almost remains the same.
For the worst case (Fig. 5(b)), PFC goes more aggressive
compared with the best case. Although the L2 hit ratio is
improved by nearly 20%, both the unused prefetch and the
amount of disk request are increased significantly. As a re-
sult, the improvement in response time is much smaller than
in the best case.

Such case studies reveal the fact that the impact of PFC
on the L2 cache hit ratio can be far away from that on
the overall system performance. To illustrate this, in Fig-
ure 6 we summarize the differences in L2 hit ratio with
or without PFC, by showing the average L2 hit ratio for
each trace-algorithm combination. Actually, for about half
of the cases, PFC reduces (sometimes quite significantly)
the L2 hit ratio, while achieving an overall performance
gain. Such results agree with a previous finding by other
researchers that when combined with prefetching, the cache
hit ratio is no longer a reliable indication of the system per-

formance [3]. Our observation is the deviation between the
two is much more evident in a multi-level system.

Impact of individual PFC actions Finally, we examine
the necessity of having both the “bypass” and “readmore”
actions in PFC, using the OLTP and the Web traces. Figure
7 demonstrates the effect of enabling the bypass or the read-
more action only. In the majority of the cases, combining
the two counter-acting operations, PFC obtains a better per-
formance gain than applying a single action only. One no-
table exception is for the AMP algorithm, where “readmore
only” consistently outperforms the full PFC. This indicates
that PFC is not prefetching aggressively enough for AMP,
which agrees with our previous analysis.

5 Conclusion and Future Work

In this paper, we analyzed the multi-level prefetching
problem and presented PFC, a hierarchy-aware optimiza-
tion that improves the performance of existing single-level
prefetching algorithms when they are applied to multi-level
systems. It automatically and dynamically adapts to the
higher-level access pattern and the lower-level cache status,
and controls the aggressiveness of the lower-level prefetch-
ing. PFC makes no assumption on the native prefetching
algorithm or the application workload, and does not mod-
ify the I/O interface between neighboring storage system
levels. Our extensive trace-driven simulation with diverse
trace workloads and cache configurations demonstrates that
PFC can deliver a consistent improvement on the average
request response time. In addition, PFC enhances the I/O re-
source utilization and potentially the system scalability, by
regulating the lower-level prefetching and reducing wasted
prefetch.

There are several directions to pursue future work. Three
particular interesting topics that we plan to study are to
investigate 1) how PFC can enhance its decision making
to better derive the upper-level prefetching behavior while
maintaining its transparency, 2) how to control the aggres-
siveness throttling and exclusive caching activities more
flexibly and precisely, and 3) how to extend PFC to work
with heterogeneous combinations of prefetching algorithms
at multiple levels.



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

LinuxRASARCAMPLinuxRASARCAMPLinuxRASARCAMPLinuxRASARCAMPA
v
e
r
a
g
e
 
r
e
s
p
o
n
s
e
 
t
i
m
e

L2 = 200% L1 L2 = L1 L2 = 10% L1 L2 = 5% L1

Original
Bypass

Readmore
PFC

(a) OLTP

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

LinuxRASARCAMPLinuxRASARCAMPLinuxRASARCAMPLinuxRASARCAMPA
v
e
r
a
g
e
 
r
e
s
p
o
n
s
e
 
t
i
m
e

L2 = 200% L1 L2 = L1 L2 = 10% L1 L2 = 5% L1

Original
Bypass

Readmore
PFC

(b) Web

Figure 7. Effect of combining the bypass and the readmore actions

6 Acknowledgment

This research is sponsored by a collaborative NSF
HECURA grant CCF-0621470. It was also sponsored in
part by a DOE ECPI Award (DE-FG02-05ER25685), two
NSF CAREER Awards (CNS-0546301 and CNS-0347854),
and NSF grant CNS-0615372. In addition, the work is sup-
ported by Xiaosong Ma’s joint appointment between NCSU
and ORNL, and Kyuhyung Lee’s scholarship from the
Korea Research Foundation Grant KRF-2006-612-D00071
through the Korean Government.

References

[1] Jean-Loup Baer and Tien-Fu Chen. Effective hardware-
based data prefetching for high-performance processors.
IEEE Trans. Comput., 44(5):609–623, 1995.

[2] Lakshmi N. Bairavasundaram, Muthian Sivathanu, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. X-
ray: A non-invasive exclusive caching mechanism for raids.
SIGARCH Comput. Archit. News, 32(2):176, 2004.

[3] Ali R. Butt, Chris Gniady, and Y. Charlie Hu. The perfor-
mance impact of kernel prefetching on buffer cache replace-
ment algorithms. In Proceedings of the International Confer-
ence on Measurements and Modeling of Computer Systems
(SIGMETRICS), 2005.

[4] P. Cao and S. Irani. Cost-aware web proxy caching. Usenix
Symposium on Internet Technologies and Systems (USITS),
1997.

[5] Pei Cao, Edward W. Felten, Anna R. Karlin, and Kai Li. A
study of integrated prefetching and caching strategies. SIG-
METRICS Perform. Eval. Rev., 23(1):188–197, 1995.

[6] John B. Carter, Wilson C. Hsieh, Leigh Stoller, Mark R.
Swanson, Lixin Zhang, Erik Brunvand, Al Davis, Chen-
Chi Kuo, Ravindra Kuramkote, Michael Parker, Lambert
Schaelicke, and Terry Tateyama. Impulse: Building a
smarter memory controller. In International Symposium on
High-Performance Computer Architecture HPCA, 1999.

[7] Fay W. Chang and Garth A. Gibson. Automatic i/o hint gen-
eration through speculative execution. In Operating Systems
Design and Implementation (OSDI), 1999.

[8] Z. Chen, Y. Zhang, Y. Zhou, H. Scott, and B. Schiefer. Em-
pirical evaluation of multi-level buffer cache collaboration
for storage systems. In Proceedings of the International Con-
ference on Measurements and Modeling of Computer Sys-
tems (SIGMETRICS), 2005.

[9] Zhifeng Chen, Yuanyuan Zhou, and Kai Li. Eviction-based
cache placement for storage caches. In Proceedings of the
2003 USENIX Annual Technical Conference, 2003.

[10] David Culler, Richard Karp, David Patterson, Abhijit Sahay,
Klaus Erik Schauser, Eunice Santos, Ramesh Subramonian,
and Thorsten von Eicken. Logp: towards a realistic model
of parallel computation. In Proceedings of the fourth ACM
SIGPLAN symposium on Principles and practice of parallel
programming (PPOPP), 1993.

[11] Fredrik Dahlgren, Michel Dubois, and Per Stenstrom. Fixed
and adaptive sequential prefetching in shared memory mul-
tiprocessors. In Proceedings of the 1993 International Con-
ference on Parallel Processing (ICPP), 1993.

[12] Fredrik Dahlgren and Per Stenström. Evaluation of
hardware-based stride and sequential prefetching in shared-
memory multiprocessors. IEEE Trans. Parallel Distrib. Syst.,
7(4):385–398, 1996.

[13] M. Dahlin, R. Wang, T. Anderson, and D. Patterson. Co-
operative caching: Using remote client memory to improve
file system performance. In Proceedings of the 1st USENIX
Symposium on Operating Systems Design and Implementa-
tion (OSDI), 1994.

[14] Asit Dan, Daniel M. Dias, and Philip S. Yu. Analytical
modelling of a hierarchical buffer for a data sharing environ-
ment. 1991 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems ACM
SIGMETRICS Performance Evaluation Review, 19(1), May
21-24, 1991.

[15] Xiaoning Ding, Song Jiang, Feng Chen, Kei Davis, and Xi-
aodong Zhang. Diskseen: Exploiting disk layout and access
history to enhance i/o prefetch. In Proceedings of the 2007
USENIX Annual Technical Conference, 2007.

[16] J. Fritts. Multi-level memory prefetching for media and
stream processors. In Proceedings of the International Con-
ference on Multimedia and Expo (ICME), 2002.

[17] John W. C. Fu and Janak H. Patel. Data prefetching in mul-
tiprocessor vector cache memories. In Proceedings of the



18th annual international symposium on Computer architec-
ture (ISCA), 1991.

[18] G. Ganger, B. Worthington, and Y. Patt. The disksim simu-
lation environment version 2.0, Dec. 1999.

[19] B. Gill and L. Bathen. Amp: Adaptive multi-stream
prefetching in a shared cache. In Proceedings of the
5th USENIX Conference on File and Storage Technologies
(FAST), 2007.

[20] B. Gill and D. Modha. Sarc: Sequential prefetching in adap-
tive replacement cache. In Proceedings of the 2005 USENIX
Annual Technical Conference, pages 293–308, 2005.

[21] Song Jiang and Xiaodong Zhang. ULC: a file block place-
ment and replacement protocol to effectively exploit hierar-
chical locality in multi-level buffer caches. In Proceedings of
the 24th International Conference on Distributed Computing
Systems (ICDCS), 2004.

[22] Doug Joseph and Dirk Grunwald. Prefetching using markov
predictors. In Proceedings of the 24th annual international
symposium on Computer architecture (ISCA), 1997.

[23] Scott F. Kaplan, Lyle A. McGeoch, and Megan F. Cole.
Adaptive caching for demand prepaging. In Proceedings of
the third international symposium on Memory management
(ISMM), 2002.

[24] R. L. Lee, P.-C. Yew, and D. H. Lawrie. Data prefetching in
shared memory multiprocessors. In Proceedings of the In-
ternational conference on parallel processing (ICPP), 1987.

[25] Hui Lei and Dan Duchamp. An analytical approach to file
prefetching. In USENIX Annual Technical Conference, 1997.

[26] Chuanpeng Li and Kai Shen. Managing prefetch memory for
data-intensive online servers. In Proceedings of the 4th con-
ference on USENIX Conference on File and Storage Tech-
nologies (FAST), 2005.

[27] Zhenmin Li, Zhifeng Chen, Sudarshan M. Srinivasan, and
Yuanyuan Zhou. C-Miner: Mining block correlations in stor-
age systems. In Proceedings of the 3rd USENIX Conference
on File and Storage Technologies (FAST), 2004.

[28] S. Liang, S. Jiang, and X. Zhang. Step: Sequentiality
and thrashing detection based prefetching to improve per-
formance of networked storage servers. In Proceedings of
the 27th International Conference on Distributed Computing
Systems (ICDCS), 2007.

[29] Jim Mauro and Richard McDougall. Solaris Internals. Sun
Microsystems Press , 2001.

[30] D. Muntz and P. Honeyman. Multi-level caching in dis-
tributed file systems -or- your cache ain’t nuthin’ but trash.
In Proceedings of the Usenix Winter 1992 Technical Confer-
ence, 1991.

[31] S. Devadas P. Jain and L. Rudolph. Controlling cache pollu-
tion in prefetching with software-assisted cache replacement.
In Tech. Rep. CSG-462,M.I.T, 2001.

[32] Athanasios E. Papathanasiou and Michael L. Scott. En-
ergy efficient prefetching and caching. In Proceedings of
the USENIX Annual Technical Conference 2004 on USENIX
Annual Technical Conference, 2004.

[33] Athanasios E. Papathanasiou and Michael L. Scott. Aggres-
sive prefetching: an idea whose time has come. In Proceed-
ings of the 10th conference on Hot Topics in Operating Sys-
tems (HOTOS), 2005.

[34] R. Patterson, G. Gibson, E. Ginting, D. Stodolsky, and J. Ze-
lenka. Informed prefetching and caching. In Proceedings of
the 15th ACM Symposium on Operating System Principles
(SOSP), 1995.

[35] P. Reungsang, S. K. Park, S.-W. Jeong, H.-L. Roh, and
G. Lee. Reducing cache pollution of prefetching in a small
data cache. In Proceedings of the International Confer-
ence on Computer Design: VLSI in Computers & Processors
(ICCD), 2001.

[36] A. Smith. Cache memories. In ACM Computing Surveys
(CSUR), volume 14, pages 473–530. ACM Press, 1982.

[37] Myoung Kwon Tcheun, Hyunsoo Yoon, and Seung Ry-
oul Maeng. An adaptive sequential prefetching scheme in
shared-memory multiprocessors. In Proceedings of the inter-
national Conference on Parallel Processing (ICPP), 1997.

[38] Steven P. Vanderwiel and David J. Lilja. Data prefetch mech-
anisms. ACM Computing Surveys, 32(2), 2000.

[39] Jeffrey Scott Vitter and P. Krishnan. Optimal prefetching via
data compression. J. ACM, 43(5):771–793, 1996.

[40] D. L. Willick, D. L. Eager, and R. B. Bunt. Disk cache re-
placement policies for network fileservers. In Proceedings of
the 13th International Conference on Distributed Computing
Systems (ICDCS), 1993.

[41] Theodore M. Wong and John Wilkes. My cache or yours?
making storage more exclusive. In Proceedings of the Gen-
eral Track: 2002 USENIX Annual Technical Conference,
2002.

[42] Gala Yadgar, Michael Factor, and Assaf Schuster. Karma:
Know-it-all replacement for a multilevel cache. In Proceed-
ings of the 5th USENIX Conference on File and Storage
Technologies (FAST), 2007.

[43] Y. Zhou, J. F. Philbin, and K. Li. The multi-queue replace-
ment algorithm for second level buffer caches. In Proceed-
ings of the USENIX Annual Technical Conference, 2001.

[44] Qingbo Zhu, Zhifeng Chen, Lin Tan, Yuanyuan Zhou, Kim-
berly Keeton, and John Wilkes. Hibernator: helping disk ar-
rays sleep through the winter. In Proceedings of the twentieth
ACM symposium on Operating systems principles (SOSP),
2005.

[45] Qingbo Zhu, Francis M. David, Christo F. Devaraj, Zhen-
min Li, Yuanyuan Zhou, and Pei Cao. Reducing energy con-
sumption of disk storage using power-aware cache manage-
ment. In Proceedings of the 10th International Symposium
on High Performance Computer Architecture (HPCA), 2004.

[46] Qingbo Zhu, Asim Shankar, and Yuanyuan Zhou. PB-LRU:
a self-tuning power aware storage cache replacement algo-
rithm for conserving disk energy. In Proceedings of the 18th
International Conference on Supercomputing (ICS), 2004.


