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Abstract. We develop a logging and replay technique for real concurrent exe-

cution on multiple cores. Our technique directly works on binaries and does not

require any hardware or complex software infrastructure support. We focus on

minimizing logging overhead as it only logs a subset of system calls and thread

spawns. Replay is on a single core. During replay, our technique first tries to fol-

low only the event order in the log. However, due to schedule differences, replay

may fail. An exploration process is then triggered to search for a schedule that

allows the replay to make progress. Exploration is performed within a window

preceding the point of replay failure. During exploration, our technique first tries

to reorder synchronized blocks. If that does not lead to progress, it further re-

orders shared variable accesses. The exploration is facilitated by a sophisticated

caching mechanism. Our experiments on real world programs and real workload

show that the proposed technique has very low logging overhead (2.6% on aver-

age) and fast schedule reconstruction.
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1 Introduction

Logging and replay of concurrent execution in multi-core environment is very mean-

ingful for debugging runtime failures and also very challenging. Much of the com-

plexity stems from non-determinism that arises from the true parallel evaluation; the

non-deterministic fine-grained interleavings are often difficult to precisely reproduce

when replaying an erroneous execution. The challenge is exacerbated in the context

of non-trivial production runs, in which a program may run for a while before a non-

deterministic failure occurs and complex hardware/software infrastructure support for

logging and replay is often not available.

Even though there have been a lot of recent efforts in testing, reproducing, diag-

nosing, and repairing concurrency bugs, existing techniques fall short in logging and

replay of real concurrent production execution. Concurrency testing techniques [20, 24,

28] perform various guided searches of possible thread interleavings. They often as-

sume that the failure inducing inputs are provided so that they can repetitively execute

the program on these inputs. They do not log or replay the I/O interactions of the orig-

inal failing execution. However, for production runs, inputs are often very complex,



involving network packets, signals, and relying on specific file system state, which re-

quires logging.

Another line of work is to record the order of instructions that access shared state,

when they are executed in parallel on different cores. However the entailed instruction-

level monitoring [5, 8, 31, 21, 19, 33, 11] is expensive and often requires hardware or

complex software infrastructure support, limiting its applicability.

PRES [25] is a technique that uses dynamic binary instrumentation framework

called PIN [18] to log different levels of runtime information of a failing run, such as

system calls, synchronizations, and even basic blocks. It then tries to reproduce the fail-

ure on top of PIN using such information. If it fails, it switches to performing bounded

search of shared memory access schedule, supported by the log. However, the need of

infrastructure support such as PIN makes it difficult to be used for production runs and

causes high logging overhead. We have also found that the bounded search of shared

memory access schedule could be very expensive for long runs due to the large search

space.

In this paper, we aim to develop a logging and replay technique for execution on

multiple cores, serving both software users and developers. It does not require any

extended hardware or complex software infrastructure, but rather operates directly on

compiled binaries. It features a very low logging overhead as it does not try to log the

precise non-deterministic access level interleavings. Replay is a cost-effective search

process that produces a deterministic schedule leading to the failure. The produced

schedule is for a single core, to allow easy application of follow-up heavy-weight anal-

ysis (e.g. slicing [1]) to the failing execution, as most such analysis are for single core

execution. Users can easily apply our logging component to production runs of de-

ployed software. Logs can be submitted to developers for remote reproduction, saving

the trouble of manually crafting the failure inducing inputs. Users can also choose to

reproduce the schedule on their side before submitting a bug report, which would sub-

stantially lower the burden of developers. It is very helpful during software development

as well since it can be used for in-house testing due to its low system requirement and

low overhead.

In our technique, we log minimal information to replay an execution such as non-

deterministic system calls, signals and thread spawns in the multi-core logging phase.

In the replay phase, we combine I/O replay with schedule exploration to replay con-

currency failures on a single core. We leverage the observation by PRES [25] that a

lot of non-determinism in a concurrent execution is intentional and thus harmless. It

is hence not necessary to faithfully reproduce such non-determinism. Instead,we use

the I/O replay log as the validation of an acceptable schedule that may be different

from the original schedule and yet induces the same failure. The intuition is that if the

schedule becomes so different from the original schedule, the program state would dif-

fer as well so that variables may have different values and different control flows may

be taken. As a result, the replay log becomes invalid, e.g., an event is expected by the

replay but not present in the log or an event has different arguments from those recorded

in the log. If the replay fails to make progress, we start a process that explores differ-

ent sub-schedules within a window close to the point where the replay fails. We have

two layers of exploration, one at the synchronized block level and the other at the fine-



grained memory access level. Any new sub-schedule leading to some progress in replay

is admitted to the final schedule. If both explorations cannot find a valid schedule in the

current window, we continue to explore preceding windows until we make progress in

the replay. We also observe that for long production runs, replay often fails to make

progress at similar situations. We hence use caching to speedup exploration. The pro-

cess is iterative and terminates when the whole log, including the original failure, is

successfully replayed.

Our contributions are highlighted as follows.

• We develop a logging and replay technique that does not require infrastructure/kern-

el/compiler support. This makes it more applicable than existing techniques. We

also precisely formulate the technique.

• Our logging techinique focuses on minimizing overhead. We only log a subset of

system calls, signals and thread spawns. They constitute the minimal necessary

set of events to replay an execution. The logging overhead is negligible, 2.6% on

average and 3.84% on the worst case.

• We study the characteristics of replaying real concurrent executions of two large

subjects with different levels of thread contention and reveal insights about the

various reasons why replay fails, which provide critical guidance for our design.

• We propose the notion of window based on the happens-before relation of events.

When replay fails to make progress, we perform two layers of schedule exploration

only within the window. This strategy allows us substantially reduce the search

space.

• We have developed a caching mechanism that can avoid redundant schedule explo-

ration, which is very common in practice.

• We perform thorough evaluation of the technique on a set of real world benchmark

programs. The results show that our schedule reconstruction algorithm is very ef-

fective and efficient. It is 10.55 times faster than the PRES replay algorithm. We

have also demonstrated scalability using a 7-days long real workload.

2 Motivation

In this section, we present the overview of our technique through an example and ob-

servations from replaying two large scale multi-threaded applications.

2.1 Motivating Example

Consider the example in Fig. 1. The code snippet is executed by two threads. The exam-

ple simulates a real bug in the logging module of the Apache webserver. Apache logs

remote requests for administration purpose. We extend the buggy logic to better explain

our technique. Upon a request, the program increases the global request count at line

4. The access is protected by a lock. For every 16 requests (as suggested by line 6), an

administrative message is generated and supposed to be put in the log eventually. The

message is first stored in a thread local buffer and later copied to a global log buffer;

the length of the local buffer len is hence updated at line 8. Lines 11-14 copy the lo-

cal buffer to the global buffer. In particular, it first tests if appending the local buffer
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int len=0;

syscall #1;

acquire(L);

req_cnt++;  

release(L);

if (req_cnt & 0x1111 =0) {

    syscall #2;

    len+=strlen(…);
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syscall #3;

if (len+buf_len <1024) {

     memcpy(buf+buf_len, ..., len);
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syscall #1;

acquire(L);

req_cnt++;  

release(L);

if (req_cnt & 0x1111 =0) {

    syscall #2;

    len+=strlen(…);

}

syscall #3;

if (len+buf_len <1024) {

     memcpy(buf+buf_len, ..., len);
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Fig. 1. A segfault caused by concurrent execution on two cores. Different background colors

denote different threads. Important variable values are shown on the right of the threads with r, l,

b denoting req cnt, len, and buf len respectively. Symbol 32 denotes line 3 in thread 2.
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Fig. 2. The different phases of our single core replay scheme.



would overflow the global buffer (with size 1024) at line 11. Variable buf len is the

current length of the global buffer. If not, it copies the message and increases the global

counter.

Fig. 1 shows a concurrent execution on two cores. The vertical direction is the time

line. Observe that statements may be executed at the same time to simulate real concur-

rency. A few important happens-before are explicitly noted by arrows. We also show

the important variable values on the right. Note that both threads observe req cnt to be

16 at line 6. Hence, both threads have a local message of size 20 generated. The local

buffer size len is 20 in both threads. Because the current global buffer size is 1000, the

test at line 11 passes in both threads, allowing copying the messages to the global buffer.

However, the global buffer size is increased in thread one before the memory copy in

thread two, resulting in copying 20 bytes at the location of 1020 and thus a segfault.

Observe that the failure cannot be easily replayed as it requires two data races, one

is about variable req cnt at lines 4 and 6 and the other is about buf len at 11 and 13.

If we simply re-execute the program on a single core and assumes thread one executes

before thread 2, the message is not even generated in thread one as req cnt=15. As a

result, the execution terminates normally. Two preemptions are needed to mutate it to

the failing run. However, in production runs, a program usually operates for a long time

before a failure. Performing a 2-preemption schedule exploration using techniques like

CHESS [20] is prohibitively expensive. Furthermore, although logging happens-before

relations between shared variable accesses may allow easy reproduction, it induces very

high runtime overhead on production runs.

Our technique only logs system calls, signals and thread spawns in the original exe-

cution. This is the minimal set of information we need to replay a concurrent execution.

Fig. 1 (c) shows the generated log. A global order of these events is also recorded.

Initial Replay Attempt. Initially, our algorithm tries to replay only based on the global

order in the log. It keeps executing a thread. If a synchronization is encountered, e.g.

before a lock acquisition or after a release, or a system call is about to execute, the

algorithm checks to see if the next event in the log is for a different thread. If so, it

context switches to that thread. Fig. 2 (a) shows the initial replay of the log in Fig. 1

(c). According to the log, it starts by executing thread 2. At point A©, when thread 2

is about to execute the acquisition at line 3, it identifies that the next event in the log

belongs to thread 1. Hence, it context switches to thread 1. Points B© and C© are also

synchronization points, but no switches are needed. At the end, the replay encounters

syscall #3 in thread one while the log has syscall #2 as the next event. The root cause is

that schedule differences cause a different control flow path. The inconsistency indicates

that we should revise our schedule.

Coarse-grained Exploration. Our algorithm then explores a different schedule within

a window. Intuitively, the execution in the current thread from the last consistent event

of the thread to the inconsistent event very likely has undesirable state differences.

Such differences could be caused by concurrent execution from other threads. Hence,

the window includes all such concurrent execution. The window for the previous in-

consistency is shown in Fig. 2 (a). The first phase is to reorder synchronized blocks in

the window. Particularly, we try to context-switch to a thread different from that spec-

ified by the log. We explore in a backward order, starting from the inconsistent event.



Going backward from syscall #3 in Fig. 2 (a), the first attempt would be a preemption

at point C©. It results in an execution shown in (b). Note that although the execution is

preempted to thread 2 at D©, it goes back to thread 1 at E© to respect the event order. As

a result, syscall #2 is correctly encountered. Hence, the preemption is admitted as part

of the final schedule.

However, the replay later fails another validity check at the segfault event, as shown

by Fig. 2 (c). That is, thread 2 is about to execute syscall #4 at line 15 but the log

indicates a segfault event. The root cause is that following the default replay strategy,

thread 1 is able to execute lines 10-13 without being interleaved. As a result, the second

data race critical to the failure does not occur such that line 11 in thread 2 takes the false

branch. The window is determined as shown in the figure (more details about window

identification will be disclosed in Section 4). Observe that there are no synchronizations

in the window. We hence resort to the fine-grained access level schedule exploration.

Fine-grained Exploration. In this phase, we detect all data races only within the win-

dow, and try to reverse the order of the two accesses in a race. The search is also back-

ward. In the window in (c), the race closest to the inconsistent event is the write of

buf len at 131 (i.e. line 13 in thread 1) and the read at 112. Hence, our schedule is

enhanced to reverse the order of these two accesses, leading to the execution in (d). Ob-

serve that right before the write, at G©, the algorithm switches to thread 2. Right after the

read, at H©, it switches back to thread 1. At I©, when thread 1 is about to execute syscall

#4, it observes that the next event is in thread 2. It switches to thread 2. The segfault

occurs at the memory copy statement. The highlighted events and the preemptions in

(b) and (d) constitute the final schedule that allows a valid replay and generates the orig-

inal failure. Note that if both coarse-grained and fine-grained explorations cannot find

a schedule to make progress in the current window, we continue to explore preceding

windows until we find a valid schedule.

2.2 Observations

Applications Observed replay failures Root Cause CPU contention Need Within Distance (root cause→fail)

None Low High Fine-grained? Window? # of instructions # of calls

Apache-1 Unmatch(write,poll) Control flow 2 3 9 No Yes 4884 185

Apache-2 Unmatch(poll,write) Control flow 8 6 17 No Yes 94 8

Apache-3 Unmatch(argument) Value 0 1 2 Yes Yes 1044 15

Apache-4 Unmatch(gettimeofday, read) Control flow 4 5 14 No Yes 720 8

Apache-5 Unmatch(read,gettimeofday) Control flow 1 8 6 No Yes 834 10

Apache-6 Deadlock User lock 1 1 2 No Yes 21 3

Apache-7 Deadlock Sync order 2 7 11 No Yes 106 6

Apache-8 Unmatch(segfault,write) Value 0 0 1 Yes Yes 631 8

MySQL-1 Unmatch(sigtimedwait,alarm) Control flow 21 39 47 No Yes 2032 52

MySQL-2 Unmatch(sigtimedwait,time) Control flow 2 7 11 No Yes 33 3

MySQL-3 Unmatch(time,sigtimedwait) Control flow 12 28 34 No Yes 84 2

MySQL-4 Unmatch(time,open) Control flow 4 10 9 No Yes 952 31

MySQL-5 Unmatch(open,time) Control flow 9 36 24 No Yes 15 4

MySQL-6 Unmatch(select,time) Control flow 13 17 15 No Yes 412 19

MySQL-7 Deadlock Control flow 3 3 3 No Yes 102 11

MySQL-8 Deadlock User lock 31 45 42 No Yes 39 3

MySQL-9 Deadlock Sync order 4 3 5 No Yes 56 2

MySQL-10 Deadlock Control flow 0 0 4 No Yes 36 3

Table 1. Replay failures



In order to motivate the idea, we perform a study on two large scale multi-threaded

applications, namely Apache and MySQL, to understand the characteristics of re-

playing real concurrency. We execute them on a quad core machine and log the sys-

tem calls. For MySQL, we use the input generated by the work-load emulation client,

mysqlslap, which is provided with the program. For Apache, we use httperf

to generate 1,000 concurrent requests. We create 4 worker threads for both subjects.

Although these are benign executions, replaying them only with the system call logs is

nonetheless challenging. Each time when replay fails to make progress due to deadlocks

or unmatched events, called a replay failure, we manually study its root cause, leverag-

ing our implementation of CHESS [20] in an interactive way. In particular, the imple-

mentation allows us to search backward from the execution point where replay fails to

look for a number of preemptions at synchronizations or shared memory accesses that

allow us to get through the failure point. For each replay failure, we manually try differ-

ent configurations of the search (e.g. the distance to search backward and the number of

preemptions) until we succeed. We also simulate different levels of thread contention

by executing a configurable CPU-intensive threaded program in the background. We

have studied three setups: (1) no contention – the subject program owns 100% of the

CPU; (2) low – 66%; and (3) high – 50%.

Table 1 presents our observations. Column 2 presents the unique replay failures we

have observed and column 3 shows the root cause of each failure. Columns 4-6 present

the number of occurrences of each replay failure at different contention levels. Column

7 shows if we need fine-grained exploration to get through the failure. Column 8 shows

if we could find a correct schedule in the exploration window (defined in Section 4).

Columns 9 and 10 present the distance from the root cause (i.e. the farthest preemption

needed) to the replay failure point, measured by the number of instructions and function

invocations.

First of all, we observe much fewer replay failures than expected, even with the

highest contention level. It seems to indicate that the non-determinism caused by real

concurrency does not substantially affect system level behavior. We observe two kinds

of replay failure symptoms: unmatch and deadlock. The former means that replay can

not make progress because the event in the log does not match the expectation. In the

table, we also present the mismatched events observed. These symptoms are caused by

five possible reasons as demonstrated by the samples in Fig. 3. Circled numbers show

the order of execution. The replay order is presented on the bottom of each example.

Note that the replay is guided by the system call log in these examples. Upon each

pthread synchronization or system call, the replay tries to switch to the thread indicated

by the next event in the log. In (A), the replay fails at syscall#2 due to control flow dif-

ference. This is the most common type. In (B), the system call arguments do not match

between the log and the replayed execution at 4©. In (C), T1 is waiting for a conditional

variable cond wait, which did not happen in the original run. The replay then switches

to T2, which cannot replay syscall#3 at 4© without T1 replaying syscall#2, and hence

deadlock. In (D), the spin lock function is a program specific lock invisible to our analy-

sis. When T1 is about to execute 6©, the replay context switches to T2 to respect the log

order, but T2 cannot acquire the lock at 2©, and hence deadlock. In (E), T1 is waiting

for the conditional variable at 1©, and then the replay context switches to T3 (hinted by



Replay : 1→3→syscall#2→Invalid
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Fig. 3. The root causes of the observed replay failures.

the log order). T3 acquires lock L at 6© then it context switches to T2 before 7© because

T2 is the only available thread at this point, again instructed by the log. Now T2 sends

signal to T1 and it context switches to T1 at 8©. However the mutex is already held by

T3 and thus deadlock.

We also observe the following:
• Replay often fails during normal execution before it reaches the faulty point.

• Replay fails more often with higher contention.
• Replay tends to fail at the same failure repeatedly.

• Fine-grained exploration is rarely needed.
• Searching within the exploration window is sufficient for all cases we have seen.

• The distance between the root cause of replay failure and the symptom tends to be

short.

• We have further observed that the repetition of replay failure is not caused by the re-

occurrences of the same input. They are due to nondeterminism of low level shared

data structures (e.g. table structures in MySQL, buffered log in Apache) that have

little to do with input values. In other words, we believe the repetitive behavior will

always manifest, regardless of the input. This is supported by our experiment in

Section 7.

3 Language and Semantics

To facilitate discussion, we introduce a kernel language. The syntax of the language is

presented in Fig. 4. A method can be spawned as a thread. We model devices and I/O



KERNEL-LANGUAGE L

Program P ::= m(){s};
Dev d ::= stdin | stdout | f

Expr e ::= xℓ | c | e1 binop e2 | readℓ(d)

Stmt s ::= x :=ℓ e | writeℓ(d,e) | s1;s2 | spawnℓ m() |

acquireℓ(k) | releaseℓ(k) | skip | assertℓ(e) | fail

Method m, Var x, File f , Lock k ∈ Identi f ier Constant c ∈ Z

Fig. 4. Language Syntax

Store σ : Var→ Z

IOStore ι : Dev→ Z

LockState K : Lock→ Z+∪{⊥}
Log L ::= α

LogEntry α ::= READ〈i, t,d, ℓ,c〉 | WRITE〈i, t,d, ℓ,c〉 |
SPAWN〈i, t, ℓ〉 | FAIL〈i, t, ℓ〉

LogEntryId i ∈ Z+ T hreadId t ∈ Z+

Fig. 5. Definitions

with read() and write(). Failures are modeled as assertion violations. Variables may be

accessed by multiple threads.

3.1 Logging Semantics

Compared to other execution artifacts, logging I/O interactions with the environment is

necessary as they cannot be constructed by post-mortem analysis. Hence, we log system

calls with global timestamps.

Fig. 5 presents definitions for the logging semantics. The device store ι denotes the

state of device, which is a mapping from a device to a sequence of constant values. The

lock state K is a mapping from a lock to a thread id or a special value ⊥, denoting

the owner of the lock, or its availability for acquisition, respectively. The evaluation

generates a log L , which is a sequence of events. In the semantics, we model the read,

write, thread spawn, and assertion failure events. In our real implementation, we log

most system calls, thread spawns, and all exceptions such as segfaults. Note that syn-

chronizations or shared variable accesses are not logged in order to achieve the lowest

possible logging overhead.

Each log entry consists of a global id i serving as a timestamp, the thread id t, and a

label ℓ indicating the program point at which the event happened. For reads and writes,

the value being read or written is also logged. Logging read values is to avoid accessing

the device during replay. Logging write values is to validate a replay.

The logging semantics are presented in Fig. 6. Expression evaluation is of the form

σ, ι,L : e
e
−→t ι′,L ′,e′ , with σ the store, ι the device store, L the log, and e the expression.

The evaluation is carried out in thread t. Devices are modeled as streams. In particular,

one value is read at a time from the head of a stream; and a value can be written to the



E ::= E;s | [·]s | x := [·]e | write(d, [·]e) | assert([·]e) | [·]e binop e | c binop [·]e

EXPRESSION RULES σ, ι,L : e
e
−→t ι′,L ′,e′ parameterized on the current thread id t

σ, ι,L : x
e
−→t ι,L ,σ(x) σ, ι,L : c1 binop c2

e
−→t ι,L ,c3 where c3 = c1 binop c2

σ, ι,L : readℓ(d)
e
−→t ι[d 7→ χ], L ·READ〈|L |, t,d,ℓ,c〉, c where ι(d) = c ·χ

LOCAL STATEMENT RULES σ, ι,K ,L : s
s
−→t σ′, ι′,K ′,L ′,s′ parameterized on thread id t.

σ, ι,K ,L : x :=ℓ c
s
−→t σ[x 7→ c], ι, K ,L , skip

σ, ι,K ,L : writeℓ(d,c)
s
−→t σ, ι[d 7→ ι(d) · c], K , L ·WRITE〈|L |, t,d,ℓ,c〉, skip

σ, ι,K ,L : skip;s
s
−→t σ, ι, K , L , s

σ, ι,K ,L : acquireℓ(k)
s
−→t σ, ι, K [k 7→ t], L , skip if K (k) =⊥ ∨ K (k) = t

σ, ι,K ,L : releaseℓ(k)
s
−→t σ, ι, K [k 7→ ⊥], L , skip

σ, ι,K ,L : assertℓ(c)
s
−→t σ, ι, K , L ·FAIL〈|L |, t,ℓ〉, fail if c = 0

σ, ι,K ,L : assertℓ(c)
s
−→t σ, ι, K , L , skip if c 6= 0

GLOBAL RULES σ, ι, K , L , (s1, ...,sn) −→ σ′, ι′, K ′, L ′, (s′1, ...,s
′
n)

σ, ι,K ,L : s
s
−→t σ′, ι′, K ′, L ′, s′

σ, ι, K , L , (s1, ...,s(t−1), E[s]s, s(t+1), ...,sn) −→ σ′, ι′, K ′, L ′, (s1, ...,s(t−1) , E[s′]s, s(t+1), ...,sn)
[STMT-ANY-THRD]

L ′ = L ·SPAWN〈|L |, t,ℓ〉 m(){s∆} ∈ P

σ, ι, K , L , (s1, ...,s(t−1), E[spawnℓ m()]s, s(t+1), ...,sn) −→ σ, ι, K , L ′, (s1, ...,s(t−1) , E[skip]s , s(t+1), ...,sn ,s∆)

[SPAWN]

σ, ι,L : e
e
−→t ι′,L ′,c

σ, ι, K , L , (s1, ...,s(t−1), E[e]e, s(t+1), ...,sn) −→ σ, ι′, K , L ′, (s1, ...,s(t−1) , E[c]e, s(t+1), ...,sn)

[EXPR-ANY-THRD]

Fig. 6. Logging Semantics

tail of the stream. More I/O complexity is omitted to simplify the formal discussion.

Our implementation supports most system calls and signals. In the evaluation of a read

expression, a constant value c is removed from the head of the stream; a read event is ap-

pended to the log. Local statement evaluation evaluates program statements in a thread,

with the form σ, ι,K ,L : s
s
−→t σ′, ι′,K ′,L ′,s′ with K the lock state and s the statement. For a

write statement, it appends the value c to the end of the stream and a write event to the

log. For a lock acquisition, if the lock is available or being held by the current thread, it

updates the lock state and allows evaluation to proceed. Note that the lack of an evalua-

tion rule when the lock is held by other threads means that the evaluation of the current

thread cannot proceed. The global evaluation will pick another thread to continue. For a

lock release, the state of the lock becomes available, which may allow some previously

blocked thread to proceed. For an assertion statement, if the assertion fails, a log entry is

appended and the whole evaluation terminates (through the fail statement). Otherwise,

it allows the evaluation to proceed, without adding a log entry.

Global rules σ, ι, K , L , (s1, ...,sn) −→ σ′, ι′, K ′, L ′, (s′1, ...,s
′
n) , denote the evaluation of n

threads with each thread i executing statement si. Each step corresponds to a change

in a single thread i, so ∀ j 6= i,s j = s′j . The choice of which thread advances at any

given point is non-deterministic, modeling concurrent execution on multiple cores. Ter-

minated threads are left in the list with the skip statement. The whole evaluation termi-



nates normally if all threads terminate normally. Rule [SPAWN] spawns a method as a

thread, by expanding the list of threads.

In our implementation, each thread has its own log file to avoid contentions on a

single log file. The log entry id remains global.

3.2 Replay Semantics

Replay is driven by a log and a schedule. It is deterministic, modeling execution on

a single core. Our replay strategy is to evaluate the same thread as much as possible,

unless it is indicated by the replay log or the schedule that a context switch should be

performed. Initially, the schedule is empty. Replay is carried out following only the

replay log. If such basic replay does not succeed, an exploration process is triggered to

generate a schedule that can advance more during replay, until eventually all the events

in the replay log, including the failure event, are correctly replayed.

The replay log serves the following three purposes. (1) The global timestamps spec-

ify a global order. Replay must follow the same order. (2) The values stored in the read

events are used as inputs to drive the replay execution, avoiding accessing the devices.

(3) The log is also used as a validation of the replayed execution.

Replay is facilitated by a schedule generated by the schedule exploration process to

provide an additional harness. It specifies a set of preemptions that are at synchroniza-

tion primitives. We will extend it to include preemptions at shared variable accesses in

Section 4.3. The syntax of a schedule is presented in Fig. 7. It is a sequence of syn-

chronization points. An entry sync〈n, t〉 denotes that switching to thread t upon the nth

synchronization operation.

ADDITIONAL LANGUAGE SYNTAX

Preempt π ::= pevnt | psync

DynChk ω ::= chkEvnt(ℓ) | chkWrt(ℓ,e) | chkAssrt(ℓ,e)

Expr e ::= ... | pevnt? readℓ(d) req. chkEvnt(ℓ)
Stmt s ::= ... | invalid replay |

pevnt? writeℓ(d,e) req. chkWrt(ℓ,e) |

pevnt? spawnℓ m() req. chkEvnt(ℓ) |

psync? acquireℓ(k) | releaseℓ(k) psync? |

pevnt? assertℓ(e) req. chkAssrt(ℓ,e)

ADDITIONAL DEFINITIONS FOR EVALUATION

Schedule S ::= sync〈n, t〉
InstCnt n ∈ Z+

Fig. 7. Definitions for Replay Semantics

New definitions relevant to the replay semantics are presented in Fig. 7. Preemp-

tion π denotes a preemption test, which determines whether a preemption should be

performed, following the schedule or the log order. There are two kinds of preemption

tests for syscalls (pevnt) and synchronizations (psync), respectively. Dynamic check ω

denotes the runtime checks performed to validate a replay. There are three kinds of



dynamic checks: checking a write event (chkWrt), an assertion failure (chkAssrt), and

other events (chkEvnt).

The syntax of kernel language is extended. Statements and expressions that could

produce events in the logging phase are preceded with preemption tests and followed

by checks. Additionally, a preemption test precedes each lock acquisition and follows

each lock release. Given a program in the original language in Fig.4, one can consider

the corresponding program in the extended language is automatically generated.

We also introduce a special counter variable sync cnt to record the number of syn-

chronizations that have been evaluated. We use σ[sync cnt ↑c] to denote increasing the

counter.

The replay rules are presented in Fig. 8. The evaluation order is given on the top.

Observe that a preemption preceding an expression/statement is evaluated before the

expression/statement, suggesting that the evaluation may switch to a different thread

before evaluating the expression/statement. A check following an expression/statement

is also evaluated before the expression/statement. We have to perform the check first as

an expression/statement cannot be properly evaluated if there is any inconsistency. If a

preemption test follows a statement (as for the release statement), it is evaluated after

the statement evaluation.

Preemption Rules. They have the form σ,S ,L , t : π
π
−→ σ′, S ′, t ′ . Given store σ, schedule

S , replay log L and the current thread id t, a preemption test evaluates to a new thread

id t ′, together with the new store and schedule. A preemption is indicated by t ′ 6= t.

For a preemption test regarding a log event (i.e. pevnt), the resulting thread id is the

one indicated by the next log event. For a synchronization (i.e. psync), if the value

of the synchronization counter, acquired by σ[sync cnt], equals to that specified in the

next preemption in the schedule S , it yields the thread id specified in S ([P-SYNC-

PRMPT]). Otherwise, it increases the synchronization count and continues evaluation

with the thread specified by the log (P-SYNC-NOPRMPT]).

Checking Rules. The second set of rules is to validate a replay. They are of the form

L , t : ω
ω
−→ b . A check ω evaluates to a boolean value b. We define replay validity as

follows.

Definition 1 (Replay Validity). Given a log L , a replay execution is valid if the exe-

cution must encounter the exact sequence of events as specified in L .

It dictates observable equivalence between the original and the replayed runs. Observe

that a valid replay must successfully reproduce the same failure as the failure event is

part of the log. According to the rules, checking events other than writes and assertions

(i.e. chkEvnt) is to test whether the program point of the syscall and the current thread

id are those specified in the log. To validate a write event (i.e. chkWrt), we additionally

check the equivalence of the parameter computed in the replay and that in the log. To

validate an assertion (i.e. chkAssrt), we ensure that if the assertion passes, there is not

a FAIL event in the log; and if the assertion fails, the appropriate failure event must be

present in the log.

Expression and Local Statement Rules. The configurations of expression and local

rules are similar to those in the logging semantics. The difference is that the device

state ι is not part of the configurations as devices are not accessed during replay. Inputs



E ::= ... | [·]π e | e [·]ω | [·]π s | s [·]ω | [·]s π? | skip [·]π | chkWrt(ℓ, [·]e) | chkAssrt(ℓ, [·]e)

PREEMPTION RULES σ,S ,L , t : π
π
−→ σ′, S ′, t ′ α.t denotes the t field of a relation α.

σ, S , α ·L , t : pevnt?
π
−→ σ,S ,α.t σ, sync〈σ(sync cnt), t0〉 ·S , L , t : psync?

π
−→ σ,S , t0 [P-SYNC-PRMPT]

σ, sync〈n0, t0〉 ·S , α ·L , t : psync?
π
−→ σ[sync cnt ↑], S ,α.t if n0 6= σ(sync cnt) [P-SYNC-NOPRMPT]

DYNAMIC CHECK RULES L , t : ω
ω
−→ b type(α): return the type of a log entry α.

α ·L , t : chkEvnt(ℓ)
ω
−→ α.t = t ∧α.ℓ= ℓ

α ·L , t : chkWrt(ℓ,c)
ω
−→ type(α) = WRITE∧α.t = t ∧α.c = c∧α.ℓ= ℓ

α ·L , t : chkAssrt(ℓ,c)
ω
−→ (type(α) 6= FAIL∧ c 6= 0) ∨ (type(α) = FAIL∧α.t = t ∧α.ℓ= ℓ∧ c = 0)

EXPRESSION RULES σ,L : e
e
−→ L ′,e′ σ, READ〈i, t,d,ℓ,c〉 ·L : readℓ(d)

e
−→ L ,c

LOCAL STATEMENT RULES σ,K ,L : s
s
−→ σ′,K ′,L ′,s′

σ, K , WRITE〈i, t,d,ℓ,c〉 ·L : x := writeℓ(d,c)
s
−→ σ, K , L , skip

σ, K , FAIL〈i, t,ℓ〉 ·L : assertℓ(0)
s
−→ σ, K , L , fail

σ,K ,L : assertℓ(c)
s
−→ σ, K , L , skip if c 6= 0

GLOBAL RULES σ, K , L , S , t, (s1, ...,sn) −→ σ′, K ′, L ′, S ′, t ′,(s′1, ...,s
′
n)

deterministic next thread(t,L) : deterministically selects the next thread given the current thread t and the log.

σ,K ,L : s
s
−→ σ′, K ′, L ′, s′

σ, K , L , S , t, (s1, ...,s(t−1), E[s]s, s(t+1), ...,sn) −→ σ′, K ′, L ′,S , t,(s1, ...,s(t−1), E[s′]s , s(t+1), ...,sn)

[R-SAME-THRD]

K (k) 6=⊥ K (k) 6= t t ′ = deterministic next thread(t,L)

σ, K , L , S , t, (s1, ...,s(t−1) , E[acquireℓ(k)]s, s(t+1), ...,sn) −→ σ, K , L ,S , t ′,(s1, ...,s(t−1), E[acquireℓ(k)]s, s(t+1), ...,sn)

[R-LOCKFAIL]

σ,S ,L , t : π
π
−→ σ′,S ′ , t ′

σ, K , L , S , t, (s1, ...,s(t−1) , E[π]π, s(t+1), ...,sn) −→ σ′, K , L ,S ′, t ′,(s1, ...,s(t−1) , E[]π, s(t+1), ...,sn)

[R-PREEMPT]

L , t : ω
ω
−→ true

σ, K , L , S , t, (s1, ...,s(t−1) , E[ω]ω, s(t+1), ...,sn) −→ σ, K , L ,S , t,(s1, ...,s(t−1) , E[]ω, s(t+1), ...,sn)

[R-CHK-PASS]

L , t : ω
ω
−→ false

σ, K , L , S , t, (s1, ...,s(t−1) , E[ω]ω, s(t+1), ...,sn) −→ σ, K , L ,S , t,(s1, ...,s(t−1) , invalid replay, s(t+1), ...,sn)

[R-CHK-FAIL]

Fig. 8. Replay Semantics. The subscripts in evaluation contexts denote the evaluation kind.



are loaded from the log instead. The rules in Fig. 8 are not complete, showing only

those different from the logging semantics. In particular, a read expression reads the

value from the first entry in the log. Note that its preceding check ensures progress of

the evaluation. Statement rules are mainly removing the first log entry.

Global Rules. These rules model deterministic execution on a single core. In the config-

uration, we introduce a thread id t to explicitly constrain the thread where the evaluation

happens; the resulting thread t ′ may be different, indicating a context switch. Rule [R-

STMT-SAME-THRD] dictates that evaluation remains within the same thread as much

as possible, ensured by the same thread id before and after the evaluation. Rule [R-

LOCKFAIL] deterministically selects the next thread when it fails to acquire a lock. In

our implementation, we select the next available thread following the log order. Rule

[R-PREEMPT] switches to the thread t ′ indicated by the evaluation of a preemption

test. It is a no-op if t = t ′. Rules [R-CHK-FAIL] specifies that the evaluation terminates

with invalid replay if a check fails.

Example. Lets revisit the example in Section 2. In the initial replay in Fig. 2 (a), sched-
ule S = nil and the log is shown in Fig. 1 (c). It ends with an invalid replay. In Fig. 2

(b), schedule S = sync〈2,2〉, representing the preemption at D©, that is, switching to

thread 2 upon the 2nd synchronization.

4 Incremental Schedule Exploration

When replay fails to make progress, our technique starts to explore different sub-schedules

within a window close to the inconsistent event. The part of the schedule that happens

before the window is considered finalized. The goal of exploration is to advance the

replay, that is, to be able to replay at least one more event. The sub-schedule leading to

advance is then admitted to the final schedule. The process is incremental and demand-

driven. Exploration could be at two levels: the coarse-grained level that explores dif-

ferent orders of code blocks protected by synchronizations, and the fine-grained level

that explores different orders of memory accesses. The algorithm first explores coarse-

grained schedules, if it succeeds in advancing the replay, it will skip the fine-grained

exploration.

4.1 Exploration Window

An important concept in our technique is the exploration window, which defines the

scope of sub-schedule exploration. This allows us to avoid logging and reordering mem-

ory accesses for the whole execution as in PRES [25]. Intuitively, we consider that an

inconsistent event αx by state differences (compared with the original run) that occur

in between the preceding event αp in the same thread and αx. Note that we consider

the validity of the program state of the thread up to αp is endorsed by the valid replay

up to that event. The state between αp and αx could be affected by any parallel execu-

tion in other threads. Hence, the exploration window includes the execution durations

of all threads that could happen in parallel with the duration from αp to αx. We con-

sider two durations could happen in parallel if the happens-before relation between the

two cannot be inferred from the event log order. Next, we formally define the window



computation.

immPrec(αtt
x , t) = αt s.t.αt ≺ αtt

x ∧ 6 ∃ αt
0 αt ≺ αt

0 ≺ αtt
x

immSucc(αtt
x , t) = αt s.t.αtt

x ≺ αt∧ 6 ∃ αt
0 αtt

x ≺ αt
0 ≺ αt

We first define two auxiliary functions. Function immPrec(αtt
x , t) computes the imme-

diate preceding event in thread t regarding the given event αtt
x in thread tt. We use the

superscript to describe the thread where an event happens. We use operator≺ to denote

precedence in the log order. Similarly, function immSucc() computes the immediate suc-

ceeding event. Given the two functions, the exploration window of a thread t regarding

a given inconsistent event αtt
x is computed as follows.

window(αtt
x , t) = 〈immPrec(αtt

p , t), immSucc(αtt
x , t)〉

where αtt
p = immPrec(αtt

x , tt)

In particular, αtt
p denotes the immediate preceding event of the inconsistent event in

the same thread tt. Hence, the window is delimited by an event in t that immediately

precedes αtt
p and an event in t that immediately succeeds αtt

x .

syscall #2

s1;

syscall #3

s2;

… 

syscall #6

s3;

…

syscall #9

syscall #1

s11;

… 

syscall #5

s13;

… 

syscall  #8

s21;

…

syscall #4

s22;

… 

syscall #7

T1 T2 T3

inconsistent event

window

window

window

Fig. 9. Example for exploration window.

Example. Consider the example in Fig. 9. The syscall numbers represent their global

order. The inconsistent event is syscall #7 in thread 3, denoted as α3
7 for short.

immPrec(α3
7,3) = α3

4

window(α3
7,2)=〈immPrec(α3

4,2), immSucc(α3
7,2)〉=〈α

2
1,α

2
8〉

That is to say the window for thread T2 is from syscall #1 to syscall #8. Observe that

from the event order, we cannot tell the happens-before of statement s11 in T2 and s22

in T3. The window for thread T1 is similarly computed. Note that although α1
2 happens

after α2
1, it is not in the window while α2

1 is. In other words, an exploration window

is not a consecutive sequence of global evaluation steps, but rather the aggregation of

durations from all threads.



Algorithm 1 One preemption coarse-grained exploration.

In: αx: the inconsistent event;

Out: α′: the new inconsistent event;

Def: R: ordered list of all threads;

SyncTrace T ::= 〈n, ℓ,α〉 with n the sync. counter, ℓ the program point of the sync., and α the

first logged event that happens after the sync.;

syncTraceInWindow(αx): replay the execution and produce the sync trace within the explo-

ration window of αx;

replay (L ,S ): replay and return the inconsistent event;

sortThreadByLog (L): sort all threads by the first event in L

CoarsegrainedExplore (αx)

1: T ← syncTraceInWindow (αx)

2: foreach 〈n, ℓ,α〉 ∈ T in the backward order do

3: let Lp ·α ·Ls = L

4: R← sortThreadByLog(Ls)

5: foreach t ∈ R in the ascendent order do:

6: S ′← sync〈n, t〉
7: α′← replay(L ,S ·S ′);
8: if αx ≺ α′ then

9: S ← S ·S ′

10: return α′

11: return αx

4.2 Coarse-grained Exploration

The coarse-grained exploration aims to reorder the synchronized blocks within the

window. Given a bound m, it tries to perform up to m preemptions. At each preemption,

the algorithm tries to switch to a thread selected based on the order of the threads’ first

events in the remaining log. The intuition is that a thread that appears later is less likely

to be part of the target interleaving. The exploration is backward: priority is given to

preemptions close to the end of the window. The intuition is that perturbing schedules

close to the inconsistent event is more likely to affect the event. Our implemetation

supports multiple preemptions, but we observe that m = 1 is sufficient in this work.

Algorithm 1 presents the backward search algorithm of one preemption. It takes

the inconsistent event as input and returns a new inconsistent event. It first collects the

synchronization trace within the window. The main loop in lines 2-10 enumerates each

synchronization in a backward fashion, and preempts at that point. For each preemption

point, lines 3 and 4 sort the threads based on their first events that happen after the

synchronization precluding the first such event α, as the default replay order has already

followed the schedule inidicated by α. The loop in lines 5-10 tries the different target

threads of the preemption based on the sorted order. In lines 8-9, if the new schedule

leads to progress, it is appended to the final schedule to allow future replay.

Example. Consider the example in Fig. 9. Assume statement s22 in T3 is a selected

synchronization for preemption. Lines 3-4 sorts the threads to R1 = {t1, t2}, suggested

by syscall#6 and #8. Hence, the algorithm first preempts to t1. Note that the original

replay switches to T2 at s22 by default. ✷



For m > 1, we cannot simply enumerate an m subsequence of the synchronization

trace as a preemption may change the control flow such that the following synchroniza-

tion sequence is different. Hence, the implemented algorithm is a recursive version of

Algorithm 1. Essentially, it first tries the different options of the first preemption and

tentatively admits it to the final schedule and then recursively calls itself to look for the

second preemption, and so on. Details are elided as m= 1 is sufficient in our experience.

4.3 Fine-grained Exploration

If the coarse-grained exploration fails to make progress, the algorithm resorts to re-

ordering shared variable accesses within the window. The idea is to first detect data

races within the window. Then the algorithm selects a subset of races and reverses the

order of the accesses in each race1. The size of the subset is limited by the preemption

bound m. Reversing the order of a racy access pair is achieved by disabling the thread

right before the first access, and then enabling it right after the second access (in a dif-

ferent thread). We call the set of races to be reversed the memory schedule. The search

of memory schedule is also backward, giving priority to accesses close to the end of the

window.

Our technique can continue to explore the preceding window if we cannot find a

valid solution in the current window, although we haven’t experienced such cases.

5 Caching Replay Failures

According to our study in Section 2, the same replay failure tends to happen repetitively.

To avoid redundant schedule exploration, we develop a caching mechanism. We have

two caches, corresponding to the two possible replay failures, unmatched events and

deadlocks, respectively.
An unmatched event replay failure means that we expect to see an event αc during

replay but the next event αx in the log is different. Ideally, the unmatched event cache
Cevent should have the following signature.

Cevent : LogEntry×LogEntry→ T hreadId× InstCnt×T hreadId

Cevent(αc,αx) = 〈t0,n, t1〉means that upon a replay failure denoted by 〈αc,αx〉, the pre-

emption should be performed in thread t0 at the nth synchronization within the window

when counting backward2. Note that we cannot use the global count as it is unique for

each synchronization instance. The execution should switch to thread t1. However in

practice, it is not desirable to hard-code the thread id in the cache because it is very

common that the different occurrences of the same replay failure may involve different

sets of threads. For example, worker threads tend to execute the same piece of code,

such as in Apache and MySQL. It is very likely that a replay failure such as (A) in

Fig. 3 happens between worker threads T1 and T2 this time but T2 and T4 next time.

1 Here, a race is defined as a pair of accesses in the window on the same shared variable from

different threads, with at least one being a write.
2 Our discussion is limited to coarse-grained schedule for brevity.



Hence, we use the label of the next statement to execute in a thread to denote the thread.

Therefore, in our design, Cevent(αc,αx) = 〈ℓ0,n, ℓ1〉 means that the preemption should

occur in a thread that is about to execute statement ℓ0 and the target thread is a thread

that is about to execute ℓ1.

For example, after the coarse-grained search succeeds in the example in Fig. 2 (a)-

(b). A cache entry Cevent(syscall#3,syscall#2) = 〈10,1,3〉 is added. Number 10 means

that we should preempt a thread that is about to execute statement 10, which is thread

one; 1 means the preemption point is the last synchronization in the window, i.e. C©; 3

means that the target thread is about to execute statement 3, i.e. thread two.

Note that our discussion limits to one preemption, extending the cache design to

support multiple preemptions is omitted.

A deadlock may involve multiple threads. A complex design is needed if we use all

the involved threads as the cache key. We have developed a much simpler design that is

very effective in practice. We use the label of the replay failure statement of the thread

of the next event in the log as the hash key. For example, in Fig. 3 (C), syscall#2 is the

next event to replay and its thread fails to make progress at the conditional wait. We use

the label of the wait as the key.

6 Implementation

In the following, we highlight some of our engineering efforts.

System Call Recording. Minimizing logging overhead is one of our design goals.

Therefore, we only log a subset of system calls which are necessary for replay. We cur-

rently intercept 84 out of 326 Linux system calls. Most of them are related to input, such

as file and socket inputs, select and gettimeofday. We do not intercept/record

output system calls.

Minimal Binary Rewriting. One of the important features of our technique is that it

is hardware/software infrastructure-free. It works directly on binaries. Therefore, our

technique intercepts syscalls by binary rewriting. In particular, it intercepts the dy-

namic linker interface. When an executable or a library is loaded, it scans the binary

image and replaces all the syscall instructions with calls to our functions that realize

the logging/replay functionalities. The binary rewriting component is adapted from that

in Jockey [27], a logging/replay tool that does not support concurrent execution. Note

that the rewriting is dynamic and very simple. It directly overwrites a small number of

instructions in the code segment.

Intercepting Shared Variable Accesses. Without compiler support, it requires non-

trivial efforts to intercept shared variable accesses, which is only needed during replay.

It is not optimal to use dynamic instrumentation infrastructures such as Pin or Valgrind,

due to their high cost. Our solution is to use memory protection to intercept memory

accesses. In fine-grained exploration, we start protecting all global and heap pages at

the beginning of the window. Upon a page fault (i.e. an access), we unprotect the page,

and set the trap register to trap the next instruction. The execution is thus trapped after

the access. We then log the access and re-protect the page. Observe that tracing is a one-

time cost and it happens only within a window. Once the trace is acquired, the algorithm



iteratively replays, reversing a set of races each time. In these replayed executions, only

the pages specified by the memory schedule are protected, causing very few page faults.

The majority of a replayed execution has no overhead.

Other Challenges. In the formal semantics, we use labels of syscall statements, which

can be considered as the program counters (PCs). However, syscalls are mostly within

libraries. We use stack-walk to identify the corresponding invocation in the user space

and use its PC as the label. Threads in real-world programs tend to use pipe and epoll

syscalls to communicate. They may send pointers through these syscalls. We cannot

simply log the content of these syscalls and restore it during replay. We choose not to

restore from the log but rather re-execute the relevant syscalls.

7 Evaluation

Applications LOC Threads Bug description

Apache-2.0.48 157K 7
#1: Unprotected buffer

#2: Atomicity violation (21287)

Apache-2.2.6 198K 7 #3: Atomicity violation (45605)

MySQL-5.0.11 934K 14
#1: Atomicity violation (47761)

#2: Atomicity violation (12845)

Cherokee-0.9.4 43K 4 Atomicity violation (326)

Transmission-1.4.2 59K 2 Null pointer access (1818)

PBZip2-0.9.4 1.5K 6 Lock destroyed before it is accesses

Gftp-2.0.19 38K 5 Crash (546035)

Table 2. Application and Bug description.

Original Recording PRES-like Two-layer Exploration Two-layer Exploration with caching Replay

time(s) overhead FG Time CG Log FG Time Cache CG Log FG Time time(s)
(%) Rep. (sec) Rep. Mem Rep. (sec) Hit Rep. Mem Rep. (sec)

Apache #1 12.43 3.22 28 301.21 24 1 1 40.21 10 14 1 1 29.85 1.64

Apache #2 7.14 3.78 22 615.42 32 1 1 281.42 8 10 1 1 92.59 6.12

Apache #3 10.89 2.94 16 196.73 27 1 1 43.85 9 14 1 1 31.23 1.28

MySQL #1 5.21 3.84 62 1342.6 46 1 2 137.1 17 24 1 2 81.47 2.47

MySQL #2 4.27 3.51 59 1429.1 39 1 1 151.82 15 22 1 1 92.5 3.71

Cherokee 120.42 2.11 15 684.29 12 1 3 61.51 2 7 1 3 42.11 4.15

Transmission 1.58 0.63 2 4.61 3 - - 1.32 0 3 - - 1.32 0.43

PBZip2 9.87 1.11 8 1615.78 6 - - 201.42 0 6 - - 201.42 35.42

Gftp 131.12 2.61 2 115 2 - - 24.68 0 2 - - 24.68 13.41

Table 3. Recording and replay performance. CG denotes coarse-grained schedule exploration.

FG denotes fine-grained schedule exploration.

In this section, we evaluate the performance and the practicality of our technique.

All experiments in this section were conducted on a quad-core Intel Xeon 2.40GHz

with 4GB of RAM running Linux-2.6.35.

In the first experiment, we evaluate the performance of our technique over a set of

real world bugs from 6 applications. Table 2 presents the programs and bugs.Cherokee



is a web server. Transmission is a BitTorrent client. PBZip2 is a parallel imple-

mentation of the bzip2 file compressor. Gftp is a multithreaded file transfer client.

We use test inputs provided with the programs if available or randomly generated in-

puts otherwise and we weave these inputs with the failure inducing inputs to trigger the

bugs. For the UI program Gftp, the failures are induced by a sequence of user actions.

In the experiment, we also compare our technique with PRES. Note that it is diffi-

cult to compare the logging overhead of PRES with our technique as PRES was imple-

mented on PIN and it logs a lot more events than our technique. The comparison hence

focuses on the replay/schedule-reconstruction cost. We implemented PRES’s replay al-

gorithm according to the published paper [25]. We call it the PRES-like algorithm.

Since PRES has multiple strategies, leveraging various kinds of information with some

of them expensive to collect, we only adapted one of the strategies such that it operates

on our log, which mainly consists of system calls, signals and thread spawns. Upon re-

play failures, the PRES-like algorithm identifies and logs all shared memory accesses,

and then tries to reverse the order of the racy pairs.

Table 3 presents the results. Column 2 presents the original execution time without

our logging tool for each application and column 3 shows recording overhead.

Columns 4-5 show the number of schedule exploration attempts and the accumu-

lated time for the PRES-like approach. Columns 6-9 show the cost of two-layer ex-

ploration without caching. Column 6 presents the number of tries for coarse-grained

schedules, column 7 shows the number of times of collecting shared-memory access

trace within the window. Column 8 shows the number of tries for fine-grained sched-

ules and column 9 presents the accumulated time. Columns 10-14 show the cost of

two-layer exploration with caching. Column 10 shows the number of cache hits.

From the data, we make the following observations : (1) The logging overhead is

very low, with the maximum 3.84% and average 2.6%. (2) Replay does not fail often

compared to the total number of events in the log (see Column 2 in Table 4), showing

the effectiveness of the default replay strategy. (3) Fine-grained exploration is rarely

needed. (4) The caching mechanism is very effective in avoiding redundant exploration.

(5) Our technique is more efficient than the PRES-like algorithm. Our schedule explo-

ration with caching is an order of magnitude faster in most cases. This is mainly because

we have two layers of exploration, limit schedule exploration within a window, and use

caching.

Once we find a schedule to trigger a bug, we can replay the bug as many times as

we want. The last column shows the replay time when we have the correct schedule.

It is significantly less than the original run except for Apache#2 and PBZip2. This

results from the time saved by emulating all syscalls during replay - no waiting time is

incurred when replaying syscalls.

Table 4 presents the statistics about windows. Column 3 shows the average number

of coarse-grained schedules which we can explore within an event’s window. Column

4 shows the average number of data race pairs. For PBZip2, Transmission and

Gftp, the correct schedules can be found with coarse-grained exploration and hence

we do not need to detect data-races.

Practicality Study With Real Workload. In order to evaluate the practicality of our

technique, we acquired the high level web request log for our institution’s web-site for



Bugs # of Window size

logs Coarse-grained Fine-grained

Apache #1 32,578 50.32 13.03

Apache #2 128,589 40.32 3.46

Apache #3 33,261 48.27 10.15

MySQL #1 95,974 20.24 2.01

MySQL #2 87,425 25.19 2.42

PBZip2 3,426 31.77 -

Transmission 36 0.25 -

Cherokee 36,841 30.17 0.15

Gftp 22,332 28.15 -

Table 4. Average window size
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Fig. 10. Runtime and space overhead with real-world workload.

Apps. Exploration w/o caching Exploration with caching

CG FG Time(s) Hit CG FG Time(s)

Apache 181 3(2) 13184.72 61 72 3(2) 5270.41

Cherokee 89 1(1) 6269.34 39 50 1(1) 3612.3

Table 5. Performance with one day log. Number in braces indicates the number of times a mem-

ory access trace is collected.



one week. We wrote a script to regenerate the workloads for 1-7 days and fed them to the

Apache and Cherokee server programs. At the end of each workload, we supplied

the failure inducing requests to trigger the failure. The average logging overhead and

aggregated space overhead are presented in Fig. 10. Observe that the logging overhead

is more or less consistent and the space overhead is reasonable for a few day’s execution.

These results show the practicality of our logging technique.

Table 5 presents the replay cost with the real-world workload. Here we replay the

last day’s log only. The schedule exploration cost is high (2-4 hours without caching,

1-2 hours with caching), because we have to pay the cost of re-executing from the

beginning for each exploration. We expect checkpointing would help a lot in this case,

but we will leave it for our future work. The number of schedule explorations is not that

high compared to the long duration of the workload. Caching substantially improves

the performance. Note that a cache hit might save multiple exploration tries.

Synchronization Order Recording. If we have the global order of synchronization op-

erations in the log, we can narrow down the search space. However the logging overhead

increases. We measured the recording overhead including the global order of synchro-

nization functions. It shows that the logging overhead becomes 7.6% for Apache and

is increased by a factor of 2-3 for other benchmarks.

8 Related Work

The prior work most relevant to ours is PRES [25], which first tries to replay with

syscall, synchronization, or even basic block log. If none of these succeeds, it tries to

reverse shared memory access order. In comparison, PRES logs more information and

it relies on PIN [18], entailing higher logging overhead. Moreover, we introduce ex-

ploration window, two-layer exploration, and caching, which are critical for reducing

search space and improving replay performance. Our results show that our schedule

exploration/reconstruction algorithm is 10.55 times faster on average. We have also

formalized the technique and revealed in-depth observations about replaying real con-

current execution in general.

CLAP [12] presents a search-based deterministic replay system, which uses SMT

solver and thread-local profiling to achieve replay determinism and to reduce the record-

ing overhead. Compared to our technique, CLAP records more information such as

control-flow paths, causing higher recording overhead (up to 296%).

There are also software based replay systems that record individual memory ac-

cesses and their happens-before relations [5, 8]. Such systems entail substantial runtime

overhead. In [2], a constraint solver is used to reproduce concurrent failures from in-

complete log. There has been substantial work on software-based recording and replay

for applications such as parallel and distributed system debugging [23, 27, 26, 9, 3, 15,

22, 13]. These systems only perform coarse-grained logging at the level of system calls

or control flow and hence are not sufficient for reproducing concurrency failures. We

consider these techniques complementary to ours.

Recently, it has been shown that with architectural support, concurrent execution

can be faithfully replayed [10, 19, 21, 31, 29]. While such techniques are highly effec-

tive, they demand deployment of special hardware, which limits their applicability.



Lee et al. [16] propose an execution reduction technique that aims to faithfully

replay a failure with a reduced log. A key technique of their work is the unit-based

loop analysis that reduces unnecessary iterations from the replay log. We consider this

technique complementary to ours.

In recent years, significant progress has been made in testing concurrent programs.

CHESS [20] is a stateless bounded model checker that performs systematic stress test-

ing to expose bugs in concurrent programs. It can be adopted to reproduce Heisenbugs.

CTrigger [24], PENELOPE [30] and PACER [6] are other concurrency testing tech-

niques that search for schedule perturbations to break usual patterns of shared variable

accesses to expose faults. Random schedule perturbations are also shown to be effec-

tive in debugging races and deadlocks [28, 14]. These techniques do not log the original

runs. They usually assume the (simplified) failure inducing inputs are provided.

DoublePlay [32] proposes a time-slicing technique of execution that runs multiple

time intervals of a program on spare cores. Dthreads [17], PEREGRINE [7] and Core-

det [4] propose deterministic execution system for multi-threaded applications.

9 Conclusion

We have developed a logging and replay technique for real concurrent execution. The

technique is self-contained, does not require any infrastructure support. It features very

low logging overhead as it does not log any synchronization operations or shared mem-

ory accesses. Replay is an incremental and demand-driven process. The technique al-

ways tries to replay by the log, but it may fail due to schedule differences. Upon a replay

failure, an exploration process is triggered to search within a window for a schedule that

allows progress. We have developed two kinds of explorations: one is at the synchro-

nized block level and the other is at the shared memory access level. A sophisticated

caching mechanism is developed to leverage the reoccurrences of replay failures. Our

results show that the technique is effective and practical, and substantially improves the

state of the art.
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