
DroidForensics: Accurate Reconstruction of Android
Attacks via Multi-layer Forensic Logging

Xingzi Yuan† Omid Setayeshfar† Hongfei Yan† Pranav Panage† Xuetao Wei‡ Kyu Hyung Lee†

†University of Georgia, Athens, GA, USA
‡University of Cincinnati, Cincinnati, OH, USA

{x.yuan, omid.s, hfyan, pranav.panag, kyuhlee}@uga.edu, weix2@ucmail.uc.edu

ABSTRACT
The goal of cyber attack investigation is to fully reconstruct
the details of an attack, so we can trace back to its origin,
and recover the system from the damage caused by the at-
tack. However, it is often difficult and requires tremendous
manual efforts because attack events occurred days or even
weeks before the investigation and detailed information we
need is not available anymore. Consequently, forensic log-
ging is significantly important for cyber attack investigation.

In this paper, we present DroidForensics, a multi-layer
forensic logging technique for Android. Our goal is to pro-
vide the user with detailed information about attack behav-
iors that can enable accurate post-mortem investigation of
Android attacks. DroidForensics consists of three logging
modules. API logger captures Android API calls that con-
tain high-level semantics of an application. Binder logger
records interactions between applications to identify causal
relations between processes, and system call logger efficiently
monitors low-level system events. We also provide the user
interface that the user can compose SQL-like queries to in-
spect an attack. Our experiments show that DroidForensics
has low runtime overhead (2.9% on average) and low space
overhead (105 ∼ 169 MByte during 24 hours) on real An-
droid devices. It is effective in the reconstruction of real-
world Android attacks we have studied.

1. INTRODUCTION
Android devices are becoming increasingly popular but

at the same time, also constantly attract cyber criminals.
For example, a recent “stagefright” attack [28] exploits a
vulnerability in Android core component, which potentially
infects 950 million Android devices.

Consequently, there is an increasing need of detecting and
investigating Android attacks. Forensic logs are critical to
the cyber attack investigation. For example, when a user de-
tects a symptom of an attack, we can analyze forensic logs
to reconstruct the attack path from the symptom to the
“entry point” of the attack. It is also important to under-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’17, April 02-06, 2017, Abu Dhabi, United Arab Emirates
c© 2017 ACM. ISBN 978-1-4503-4944-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3052973.3052984

stand the damage have been conducted by the attack. For
instance, understanding what system objects are compro-
mised or what data was exfiltrated is important to resolve
the damage.

Forensic logging captures behaviors of the system execu-
tion and their relations. For instance, audit logging tech-
niques [11] are widely used for cyber attack forensics. They
records system properties such as users, processes, files or
network sockets and their relations such as a process re-
ceives data from network socket, a user log-in to the system
or a system file is replaced by a process. It can be used for
backward and forward tracking [43, 45] to locate the ori-
gin of an attack and to identify the damage to the system.
Recent work [45, 49, 29] show that forensic logging is an
effective technique for cyber attack forensics in desktop or
server environments.

However, unlike traditional desktop or server applications,
most Android applications run within the virtual machine
called Android Run-time (ART) to provide isolated execu-
tion environment for each process. There are two major
hindrances to use traditional system call logging in Android.
First, system calls might be too low-level to capture the rich
semantics of application behaviors. Second, Android has
unique inter-process communication (IPC) protocol, called
binder and it is difficult to accurately capture IPC from the
system calls. For example, if the Android application steals
a contact list from the device and sends it to SMS mes-
sage, system calls cannot capture the critical behaviors such
as reading contact information and sending SMS message
to the attacker’s number. Because the Android application
cannot directly access contact or SMS, but it uses binder

call to interact with Android service providers such as Con-

tentProvider or SMSManager to access contact or SMS.
Recently, CopperDroid [63] and DroidScope [66] have pro-

posed techniques to analyze the behaviors of Android mal-
ware. CopperDroid developed system-call based analysis
techniques for Android attack reconstruction. DroidScope [66]
is the Android malware analysis engine that provides unified
view of hardware, kernel and Dalvik virtual machine infor-
mation. However both are built on top of emulated environ-
ments (e.g., QEMU [22]) and it generally incurs nontrivial
runtime and space overhead for resource-constrained mobile
devices.

In this paper, we develop a multi-layer forensic logging
technique for Android, called DroidForensics. DroidForensics
captures important Android events from three layers; An-
droid API, Binder and system calls. Our API logger can
capture high-level semantics of application, Binder logger ac-

1

http://dx.doi.org/10.1145/3052973.3052984

curately captures interactions between applications, and sys-
tem call logger records low-level events such as system calls.
In addition, DroidForensics provides easy-to-use, SQL-like
user interface that the user can compose queries to inspect
an attack. DroidForensics generates a causal graph to an-
swer the query and the user can iteratively refine queries
based on the previous graph. We do not require an emu-
lated environment and DroidForensics is designed for real
devices. In summary, this paper makes the following contri-
butions:

• We design and implement a multi-layer forensic log-
ging system for Android. Our system consists of three
modules to capture different levels of information from
high-level application semantics to low-level system
events. We also accurately capture inter process com-
munication via Android’s binder protocol.
• We develop a light-weight system call logging tech-

nique for Android. Existing Android audit system [4]
causes up to 46% overhead in Nexus 6 that would be
too expensive to be active during normal execution.
Our runtime overhead on Nexus 6 is only less than
4.05%. We can also reduce the space consumption sub-
stantially.
• We develop an easy-to-use user interface to aid the

attack investigation. The attack reconstruction is car-
ried out by writing SQL-like queries. Our pre-process
automatically converts the user query to SQL-queries,
and the post-processor generates causal graphs.
• We evaluate the efficiency, effectiveness and compat-

ibility of DroidForensics. The results conducted on
widely used Android benchmarks show that our run-
time overhead is only about 2.9% on average and 6.16%
in the worst case. We present that 31 android mal-
wares are effectively resolved by querying various levels
of information. The compatibility results produced by
Android Compatibility Suite (CTS) show that Droid-
Forensics maintains the same compatibility-level com-
paring with original Android.

The rest of this paper is organized as follows. Section 2
introduces the overview of DroidForensics and motivating
example using Android malware called AVPass. Section 3
discusses our design and implementation details. In Sec-
tion 4, we evaluate DroidForensics for efficiency, effectiveness
and compatibility. We discuss limitations of DroidForensics
and our future plans in Section 5. Section 6 presents related
works and we conclude the paper in Section 7.

2. SYSTEM OVERVIEW AND MOTIVATING
EXAMPLE

In this section, we present an overview of DroidForensics
and we use a real-world Android malware, AVPass [14], to
motivate our work.

A high-level overview of DroidForensics is depicted in Fig-
ure 1. It has three logging modules, namely API logger,
Binder logger and System call logger. API logger captures
important Android APIs such as accessing database, con-
trolling sensitive devices (e.g.,a camera, GPS or microphone).
Binder logger monitors interactions between processes via
IPC or RPC, record their information such as process id for
the caller (or the client) and the callee (or the server), and
a message shared between them. Finally system call log-
ger records forensic-related system calls such as calls that

Android Application

Android API / Java API

Kernel

System
Libraries

API Logger

System call LoggerForensic
DB

User

Q
u
e
ry

C
a
u
sa

l G
ra

p
h

Android Device

System
Services

libbinder.so

Binder Logger

Figure 1: High level overview of DroidForensics

affect other processes (e.g., fork, kill) or other system ob-
ject (e.g., read, write, recv, send). To record a global order
of these events from different layers, API and Binder log-
gers forward their events to system call logger and system
call logger stores them with global timestamps. The dot-
ted line in Figure 1 shows the flow of collected forensic logs.
DroidForensics periodically transfers those forensic data to
an external server through wifi and three layers of logs are
encoded uniformly into a relational database. Finally the
user can compose SQL-like queries to investigate an attack.
DroidForensics converts the user query to SQL-queries and
also generates a causal graph using the output from foren-
sicDB. The user can observe malicious behaviors from dif-
ferent layers in a unified causal graph, and refine queries for
the further investigation.

Attack Description: Suppose John carries an Android
smart phone, and falls victim to a social engineering malware
download attack by clicking on a link in an advertisement
page. The malware, AVPass [14], silently installed in John’s
device. The malware deletes an icon and a widget preview to
hide from the user, then steals sensitive information such as
contacts, SMS messages from the victim device. Finally, the
malware stores sensitive data into the local SQLite database
for exfiltration.

Forensic Analysis: John accidentally detects that a sus-
picious process, com.lge.clock with pid 3052, is running in
the background. He wants to identify what this process has
done in his device. However, the malware’s activities hap-
pened a while ago, and the inspection of the malware process
or the device states does not provide a clear evidence of the
attack. He then tries to reconstruct the process behavior
using our technique. DroidForensics successfully captured
the behaviors of the malware in three layers, Android API,
binder, and system calls. John composes the first query to
find out the events invoked by the process 3052:

$ SELECT * FROM SYSCALL,BINDER,API WHERE pid=3052;

DroidForensics’s pre-processor converts the user-query into
SQL queries. John’s first query is converted to SQL union
query to retrieve the output from multiple sources. Our
post-processor generates a causal graph from the output of
the query. The blue dotted box in Figure 2 shows an (simpli-
fied) output from John’s first query. The graph shows that
the suspicious process read four files through system calls,
namely com.lge.clock.xml, config.txt, res.db-journal

and res.db. From the read events to res.db-journal and
res.db, John understands that process 3052 accesses a local

2

3052
com.lge.clock

2515
droid.launcher3
Launcher-loader

/data/data/
com.android.launcher3/

databases/
widgetpreviews.db

/data/data/
com.android.launcher3/
databases/app_icons.db

Binder
STime: 2016-09-08 17:51:06.21
ETime: 2016-09-08 17:51:06:21

SQLite: DELETE FROM
shortcut_and_widget_previews

WHERE packageName = com.lge.clock
AND profileId = 0

SQLite:SELECT profileId, packageName,
lastUpdated, version

FROM shortcut_and_widget_previews

SQLite: DELETE FROM
icons WHERE

componentName LIKE
com.lge.clock AND profileId = 0

2179
com.android.phone

/data/data/
com.android.providers
.telephony/databases/

mmssms.db

SQLite: DELETE FROM
directories WHERE

packageName=com.lge.clock

SQLite:SELECT _id, address, body,
date, type FROM sms_restricted

ORDER BY date DESC

Binder
STime:2016-09-08 17:53:07.13
ETime:2016-09-08 17:53:08:18

1913
com.android.provider

/data/data/
com.android.providers.co

ntacts/databases/
contacts2.db

Binder
STime:2016-09-08 18:04:51.76
ETime:2016-09-08 18:07:56:45

SQLite:
SELECT _id, number, dura�on,
date, type FROM calls WHERE

(((type != 4)) AND
((phone_account_hidden = 0)))

ORDER BY date DESC

/data/user/0/
com.lge.clock/files/

app03/res.db

SYS:pread,
pwrite

/data/user/0/
com.lge.clock/
shared_prefs/

com.lge.clock.xml

SYS:read

/data/user/0/
com.lge.clock/
files/app04/

config.txt

SYS:read

SQLite: CREATETABLE if not exists(t_up_list,
t_contacts, t_sms, t_calllog, t_record_call,
t_record_bg, t_loca�on, t_applist, t_album)
SQLite: UPDATE t_up_list SET state=0
SQLite: INSERT INTO t_contacts VALUES (đ.)

SQLite: INSERT INTO t_sms VALUES (đ)

SQLite: ...

/data/user/0/
com.android.providers
.telephony/databases/

mmssms.db-journal

SYS:open, pread

/data/user/0/
com.lge.clock/files/

app03/res.db-journal

SYS:openat,
pread, pwrite

Query #1: SELECT * FROM SYSCALL,BINDER,API WHERE pid=3052;

Query #4: SELECT * FROM SYSCALL,BINDER,API
WHERE pid=2515

and STime >= `2016 -09-08 17:51:06.21'
and ETime <= `2016 -09-08 17:51:06:21';

Query #3: SELECT * FROM SYSCALL,BINDER,API
WHERE pid=2179

and STime >= \\ `2016 -09-08 17:53:07.13'
and ETime <= `2016 -09-08 17:53:08:18';

Query #2: SELECT * FROM
SYSCALL,BINDER,API WHERE

pid=1913 and STime >= \\ `2016 -
09-08 18:04:51.76' and ETime <=

`2016-09-08 18:07:56:45';

Figure 2: Generated causal graph from the user queries.

database, but he wants more specific information such as an
exact query that 3052 used. Fortunately, DroidForensics’s
API logger captures SQLite API invoked by process 3052
and shows the query as well as the target database in the
graph. There were multiple SQLite queries from the mali-
cious process (bottom right corner in Figure 2). It creates
table, updates table state, and inserts data into various ta-
bles.

The graph also shows multiple binder transactions to three
different servers, pid 2515, 2179 and 1913. Now John wants
to further understand what have happened in those servers.
Each binder event has a start time (STime) and an end time
(ETime) of each binder transaction. They show the time
stamps when the binder sends a request to the server pro-
cess and receives a reply. For example, process 3052 invoked
the binder call to the server 2151, and the binder driver sends
this request to process 2151 at 2016-09-08 17:51:06.21, and
the binder driver received the replay from 2151 at 2016-09-
08 17:51:06:21. We assume that all server behaviors between
two time stamps are causally related to the client. We dis-
cuss details of binder events in the section 3.2. John com-
poses following three queries to further investigate behaviors
from the server processes: $ SELECT * FROM SYSCALL,BINDER,API

WHERE pid=1913 and STime >=

‘2016-09-08 18:04:51.76’ and ETime <= ‘2016-09-08 18:07:56:45’;

$ SELECT * FROM SYSCALL,BINDER,API WHERE pid=2179 and STime >=

‘2016-09-08 17:53:07.13’ and ETime <= ‘2016-09-08 17:53:08:18’;

$ SELECT * FROM SYSCALL,BINDER,API WHERE pid=2515 and STime >=

‘2016-09-08 17:51:06.21’ and ETime <= ‘2016-09-08 17:51:06:21’;

Figure 2 shows a generated graph from the queries. The
output from each query is merged into the previous graph
so that John can see the full graph. It shows that process
1913 retrieves contact lists, 2179 reads SMS messages from
the phone, and 2515 deletes the malware icon and widget
preview to hide itself from the user. Now John fully un-
derstands the attack flow. The malware steals private in-
formation and stores it into a local database (com.lge.clock
\files\app93\resdb), and also the malware deletes the icon
and preview.

Existing Techniques: Traditional system call logging [11,
12] does not show interactions between the malware process
and service providers through binder protocols. For exam-
ple, John only knows that the malware accesses the local
database file, but system call logs do not show binder trans-
actions or SQLite queries. Therefore, he will miss most at-
tack behaviors.

CopperDroid [63] developed a technique to capture binder
IPC from ioctl system calls, but it may hurt the runtime
performance due to heavy logging (it pulls out the user mem-
ory used by ioctl) and analysis requirements. More impor-
tantly, it cannot capture the high-level API behaviors such
as SQLite queries. Accessing SQLite does not always invoke
system calls. Because it is common for SQLite to cache a
whole table into memory, and accessing memory-loaded ta-
ble does not need a system call. For example, process 1913
and 2515 in Figure 2 do not show any system call because
target tables are already loaded in the memory. System call
logs will completely miss those behaviors.

DroidScope [66] is a malware analysis engine that pro-
vides a unified view of malware behaviors. Similar to our ap-
proach DroidScope monitors multiple aspects of malware ex-
ecutions. However, DroidScope was designed for the Dalvik
virtual machine. Dalvik environment is not available any-
more on Android-6.0 and newer versions, so it makes Droid-
Scope’s analysis engine for Dalvik bytecode infeasible. Fur-
thermore, both DroidScope and CopperDroid require emu-
lated environments (e.g., QEMU) to monitor and analyze
the process execution that generally incurs high overhead.

Taint tracking techniques [31, 25, 65, 62] might be able
to detect what information got stolen, but cannot show how
the attack unfolded. Additionally, taint tracking generally
requires instruction-level monitoring to propagate taint tags
that causes high overhead.

3. SYSTEM DETAILS
Before we introduce the details of our implementation, we

will briefly discuss an overview of Android framework. An-
droid is a Linux-based Operating System for mobile devices
and tablet computers. Even though Linux kernel is the core

3

part of Android, there are important differences in applica-
tion execution models.

First, Android does not allow to use traditional System
V based IPC or RPC protocols, but Android applications
need to use binder, a custom implementation of IPC/RPC
protocol. Binder communication is an important source to
capture causal relations between processes.

Second, Android provides various Android-specific APIs
such as framework APIs, system APIs, and resource APIs.
The API usage often represents high-level program seman-
tics.

Most Android applications are written in Java, but An-
droid also allows developers to write code in native com-
ponents (C or C++) to enhance the performance. Native
components can invoke methods in Java libraries and also
directly call lower-level instructions such as system calls.

3.1 Android API Logging
API logger captures application’s activities at the API

level to reason about how it interacts with the Android run-
time framework. It can also capture an interaction between
native components and Android APIs. We directly instru-
ment Android source code to capture important APIs with
their arguments and return values. In particular, we iden-
tify the set of Android APIs that potentially induce causal
relations with system objects such as the device resources
or private data. We instrument 21 Android APIs and they
mainly fall into three categories:
• Framwork APIs: We capture APIs that can handle

Android framework resources. For instance, SMSMan-
ager APIs can send and receive SMS messages, Tele-
phonyManager APIs can call or receive calls and also
get device’s IMEI number. PackageManager APIs al-
low to install or uninstall APK packages and also scan
installed application lists.
• System APIs: We monitor APIs that can access cam-

era, GPS, and microphone defined in Camera, Loca-
tion and MediaRecorder classes, respectively.
• Resource APIs: We log APIs that can access device

contents such as a local storage or a database. For in-
stance, we capture SQLite database APIs and content
provider APIs.

Our instrumented code snippets collect API information
and send it to system call logger where we assign each event
a global timestamps to show the happens-before relations
between different logs. We store API information into heap
memory, and we use openat() system call to deliver the data
to system call layer. openat has three arguments, (int fd,

char* path, int oflag) and we use fd as an indicator of
log type. For example we use -255 for API and -256 for
Binder. path points to the process heap memory where we
store API information. Note that we can send an arbitrary
length of data through the memory. openat with a negative
fd simply returns an error from the kernel and does not
cause any side-effect only except Linux errno [9]. When a
system call fails, the kernel sets an errno to indicate a reason
of the error. We save the current errno before openat and
restore it after the system call to avoid a side effect from
errno.

Alternative approach: We studied an alternative approach
that can reduce the manual instrumentation. The idea started
from an observation that most API calls from Android ap-

B
in

d
e
r
D

ri
ve

r

C
li
e
n
t
P
ro

c
e
ss

S
e
rv

e
r
P
ro

c
e
ss

li
b
b
in

d
e
r.
so

li
b
b
in

d
e
r.
so

serve the
client

struct binder_transaction_data {
 .
 /* transaction data */
 const void *buffer;
 const void *offsets;
 .
}

User-
space

Kernel-
space

User-
space

Figure 3: An overview of binder protocol.

plications invoke DoCall(), Invoke() or Execute() methods
defined in Android runtime class. Then they search the des-
tination API address and jump to the target API. If the
call arrives at DoCall(), Invoke() or Execute(), the target
API name and their arguments can be retrieved from Shad-

owFrame data structure. Our idea is to instrument only those
three methods to capture API calls and their arguments. We
can monitor all API calls go through those methods and we
can detect APIs we are interested (e.g., SQLite query) by
simple string comparison.

However, it has a limitation. We cannot guarantee that
all APIs are going through runtime methods. For instance,
if Android compiler (dex2oat) optimization applies method
inlining or direct offset calling, the application can directly
jump to the target API without passing through aforemen-
tioned runtime methods. Native components are another
problem. It can directly call Android APIs and runtime
methods cannot observe them either. This approach has
advantage as the user can easily configure API list to mon-
itor and minimize Android modification, but we decide not
to use it due to above limitations.

Another approach we considered is APK rewriting. It can
directly instrument arbitrary codes in APK file, but this ap-
proach has limitations. APK rewriting or static instrumen-
tation is known to be vulnerable to the code obfuscation,
and it cannot instrument native code. Furthermore, An-
droid applications can load an additional code at runtime,
called dynamic loading code. Android attacks techniques
often use dynamic loading code [54, 68, 32, 57] to avoid of-
fline analysis systems, but APK rewriting technique cannot
handle dynamically loaded codes.

3.2 Binder Logging
Another challenge to build an effective forensic analysis

system for Android is its unique Inter-Process Communica-
tion (IPC) mechanism. Android applications are not allowed
to use traditional System V based IPC or RPC protocols,
but required to use Android binder, a custom implementa-
tion of the OpenBinder protocol [5]. Android applications
use binder protocols to invoke methods of remote objects
(e.g., services or activities) to interact with other applica-
tions. For instance, in order to send SMS message, Android
applications need to invoke remote procedure, sendTextMes-
sage provided by com.android.sms process (i.e., SMSMan-

4

ager). Similarly, Android applications use binder to access
photos, contacts, map or other data stored in Android’s
main storage. In fact, all 31 Android malwares we have
inspected use binder calls to steal information or to send
unauthorized text message. The user application also can
be a service provider. For instance, Facebook and Twitter
provide sign-in services that enable people to log into the
app with Facebook or Twitter accounts.

Consequently, IPCs or RPCs are important sources for
forensic analysis but existing Linux-based logging techniques
cannot effectively capture them. We need to understand se-
mantics of binder protocol (e.g., client’s and server’s process
ids, invoked remote method and a data object that is trans-
ferred between the client and the server) and capture them.

Figure 3 shows a simplified data flow in the binder proto-
col. To provide a service to other processes, the server first
registers a service into ServiceManager, a special binder ob-
ject that is used as a registry and lookup service for other
binder objects. Once the service is registered, client pro-
cesses can find and interact with it through binder protocol.
The client (or caller) process X first interacts with Service-

Manager to find the remote method name and invokes the
remote method. The binder protocol sends BC_TRANSACTION
message to Binder driver. It is delivered to Binder driver
with multiple ioctl system calls. Then the Binder driver
lookups a server process Y who can provide the service to
the client X, and sends BR_TRANSACTION message to process
Y. When the process Y finishes, it sends BC_REPLY message
to the Binder driver and the driver forwards it to process X
via BR_REPLY.

We log BR_TRANSACTION and BC_REPLY messages along
with the information of the client (process X) and the server
(process Y). We assume that all server’s behaviors between
BR_TRANSACTION and BC_REPLY are causally related to the
client process. If the server concurrently receives requests
from multiple clients, our conservative assumption may in-
troduce false positives, but we will not miss any information.
In practice, we do not observe any false dependences in our
experiments.

In some cases, BR_TRANSACTION or BC_REPLY contains a
message shared between the client and server that can be in-
formative for the forensic analysis (e.g., SMS message, a re-
cipient’s number, IMEI). Figure 3 also presents a data struc-
ture that BR_TRANSACTION and BC_REPLY use. “void *buffer”
contains a shared memory address that can be accessed by
both the client and server. We log the first 128 bytes of the
buffer if it can be a useful information for forensic analysis.
We log the buffer that goes to SMSManager or sent from
TelephonyManager because they possibly contain outgoing
SMS message or devices’s IMEI number. Note that logging
the first 128 bytes is enough in our evaluation scenarios and
the length of data to be logged can be easily tunned to meet
one’s demand of security level.
Alternative Approaches: In API-layer, it is possible to
capture intent calls which initiate binder protocols. How-
ever it has following limitations. Intent declares a recip-
ient by an action string or a component name. At the
run-time, we can specify the recipient process, but that in-
formation might not be available in post-mortem forensic
analysis. Note that arbitrary applications can register the
service, and service name alone is not enough information
to understand the behaviors. Furthermore, native compo-

Kernel Module
1) Capture the entry and exit of

selected system calls

2) copy system call
 information to
 a ring buffer

Multi-threaded daemon process
4) store into a local file or
 send to a server via network

3) copy from
 a ring bufferUser-

space

Kernel-
space

Ring Buffer
for core #2

Ring Buffer
for core #1

Figure 4: System call logging overview.

nent can use binder protocol through binder library without
using intent API.

CopperDroid [63] proposed a technique that analyzes the
semantics of binder via ioctl system call. However, Cop-
perDroid is build on top of QEMU and it requires the out-
of-the-box analysis to understand a payload of each ioctl

calls. Unfortunately, their technique could be too heavy to
be implemented in a real device.

Accordingly, we decide to monitor IPC/RPC in the binder
library (libbinder.so) where we can collect all information.

3.3 System call Logging
In the previous sections, we discussed Android API and

binder logging techniques to monitor high-level application
behaviors and interactions between applications or services.
However, they are not enough to fully capture application
behaviors. For instance, Android applications can contain
native components written in C/C++. Native components
can directly invoke lower-level instruction such as system
calls that API logger can not observe. Malicious apps fre-
quently hide their activities in native code [61, 17, 56, 52] to
evade the Java-code analysis techniques [21, 37, 47, 50, 64,
69]. Recent study [17] shows that 37% of Android applica-
tions (446k out of 1.2 million Android apps) potentially use
native components. Therefore we develop system call logger
that can capture system calls from native components.

System call logging is a popular technique in traditional
desktop or server forensics. For instance, Linux Audit [11] is
a default package in most Linux distributions, and DTrace [8]
is shipped with FreeBSD operating system. Linux Audit is
also available in Android [4], however, it causes too much
run-time overhead (up to 38%) and space consumption to
use in practice (e.g., always-on forensic logging) in resource-
constrained mobile devices. To address this problem, we
have developed a light-weight system call logging module for
Android. We borrow an idea from state-of-the-art Linux sys-
tem call logging techniques, ProTracer [49] and Sysdig [12].
Thankfully, Sysdig is an open-source project under GNU
General Public Licenses (free to share and change the code),
and we reuse part of their code to build our logger for An-
droid. Our system call logger causes only 1.99% ∼ 4.56%
run-time overhead in Nexus 6 smartphone.

Similar to ProTracer [49] and Sysdig [12], our system con-
sists of two parts, a kernel module and a user-space dae-
mon process. Figure 4 shows the architecture of our system.
The kernel module leverages tracepoints [15] to capture
the entry and exit of each system call (e.g,. sysenter and

5

Benchmark
Runtime Overhead Space Consumption

Linux DroidForensics DroidForensics Linux DroidForensics DroidForensics
Audit [4] without comp. with comp. Audit [4] without comp. with comp.

PCMark-work 15.31% 0.26% 1.99% 166MB 110MB 16MB
Android- TabletMark-web/email 22.61% 1.44% 3.57% 590MB 402MB 61MB
6.0.1 r42 TabletMark-photo/video 37.38% 1.41% 2.12% 612MB 509MB 64MB

3DMark 18.98% 3.12% 3.75% 56MB 44MB 7.3MB
PCMark-work 18.34% 1.84% 2.32% 150MB 101MB 14MB

Android- TabletMark-web/email 24.19% 3.77% 4.14% 612MB 421MB 67MB
5.1.0 r3 TabletMark-photo/video 38.73% 2.21% 3.41% 661MB 469MB 69MB

3DMark 19.15% 3.19% 4.05% 59MB 46MB 8.1MB
Average 24.34% 2.16% 3.17% 363MB 263MB 38.3MB

Table 1: Overhead of system call logging: Linux Audit and DroidForensics’ system call logger.

sysexit). At runtime, the kernel module collects system
call information and stores it into a kernel ring buffer. To
avoid race conditions, we generate a separate ring buffer for
each CPU cores. The user-space daemon reads from ring
buffers, compresses them and sends to the local file or an
outer server through the network. We only capture forensic-
related system calls such as calls that affect other processes
(e.g., fork, kill) or other system objects (e.g., read, write,
recv, send). We record 52 out of 328 system calls. Our se-
lection of system calls are similar to previous Linux-based
forensic logging techniques [49, 45]. API and binder logs de-
livered via openat() system call are handled here. They are
further processed to retrieve API and binder information in
the server when we inject logs into a relational database.

If the kernel module generates data faster than the user-
level daemon can consume, we might lose data. To prevent
the loss of information in the ring buffer, we make sure that
the ring buffer has enough space to store the current sys-
tem call. When we intercept the entry of a system call, we
check the remaining space of the ring buffer. If the ring
buffer is full, the kernel module suspends the execution of
the system call and allows the user-space daemon to con-
sume the ring buffer. We allocate each ring buffer with 16
MBytes, for example, Nexus 6 needs four ring buffers and
Nexus 9 has two, one for each CPU-core. In our experiments
with I/O intensive workloads and Android benchmark ap-
plications, ring buffers hardly become full. The user-space
daemon is multi-threaded process that efficiently consumes
ring buffers. It compresses the data using zlib before writ-
ing to the storage, then periodically sends the compressed
log to a predefined server via ssh protocol. In our current
setup, we send the log every 10 minutes if wifi is available.

Table 1 shows a runtime and space overhead of Linux au-
dit and DroidForensics’s system call logger. In this exper-
iments, we use popular Android benchmark applications,
namely PCMark [10], TabletMark [13], and 3DMark [1].
These benchmarks have been used by IT magazines and de-
velopers to compare performances between different devices
and Android versions.

PCMark-work benchmark simulates basic office work tasks
such as web-browsing, video editing, writing, photo editing
and parsing data. PCMark-storage accesses various types
of files located in internal storage, external storage and lo-
cal database. TabletMark simulates web-browsing, email ac-
cessing, and watching and editing photos and videos. 3DMark
uses OpenGL ES benchmarks to measure CPU and GPU
performance. Each benchmark execution takes 20 to 60 min.

The third column shows runtime overhead of Linux audit
system. It goes up to 38%. The forth and fifth columns show
overhead from our technique while we turn-off the compres-

sion, and turn-on the compression, respectively. DroidForensics
with the compression is a little slower than without the com-
pression, but it still shows much lower overhead (3.17% on
average and 4.14% in the worst case) than Linux audit. The
last three columns show space consumption of system call
logs generated by Audit, DroidForensics without the com-
pression, and DroidForensics with the compression, respec-
tively. DroidForensics with the compression shows much
smaller log size than other two cases (9.5 times smaller than
Audit and 6.9 times smaller than without the compression).
We can observe similar results from Nexus 9 tablet (details
are elided). We argue that 3% to 4% of runtime overhead
from DroidForensics with the compression is acceptable in
practice. All other experiments in this paper are conducted
with the compression turned on.

3.4 User Interface
DroidForensics uses MySQL database as a back-end stor-

age and we provide a declarative interface based on SQL-like
language to the user. Various levels of logs are encoded into
SQL database and the user can compose one or more queries
on relations to reconstruct Android attacks. We defined a
set of relations that describe aspects of Android API, binder
and system calls. Figure 5 presents the detailed schemas.
Pid and Uid shows the process id and the user id of the pro-
cess, and Time means the timestamp of the event. Binder
event shows a causal relation between the client and the
server processes. It has Spid and Suid fields for the server’s
process id and user id. Stime and Etime are timestamps
for BR_TRANSACTION and BC_REPLY event respectively. We
assume that the server’s events happens between Stime and
Etime are causally related to the client process (details are
discussed in the section 3.2). If additional information is
available (e.g., SMS body or a recipient’s address), we store
them in MSG field.

API event presents the interaction between Android app
and underlying Android Framework. We use Name and
ARG fields to represent the API name and their important
arguments (e.g., SQLite query).

System call event shows the interaction between the pro-
cess and Android kernel. We use Num for system call num-
ber and Target for the target system object. We additionally
define TargetType field to show the type of the object such
as file, socket, or process. It is useful to understand low-level
process behaviors such as process X reads file A, process Y
send a packet to IP 1.2.3.4 or process X kills process Y.

Figure 6 shows how DroidForensics’ user interface works.
DroidForensics accepts SQL-like query from the user and
our pre-processor converts it into SQL queries. Our post-
processor generates a causal graph from the query results

6

Figure 5: Database schema for log properties

[Pre-processor]
Compile Query

MySQL DB
(API, Binder, Syscall

Tables)

SQL-like

Query

Causal
graphs

SQLqueries

SQL

output

Droid
Forensics

Forensic
Logs

Server

[Post-processor]
Generate Graph

Figure 6: The user inferface of DroidForensics.

and the user can iteratively compose queries based on gen-
erated causal graphs. Our post-processor can merge the new
results into the previous graph so that the user can inspect
the attack with a unified graph. We demonstrated how the
user can utilize DroidForensics to reconstruct the Android
attack in section 2.

4. EVALUATION
To establish the practicality of DroidForensics, we mea-

sure the runtime and space overhead it incurs for forensic
logging. We also evaluate DroidForensics on 30 real-world
and one crafted Android malwares, and we can easily recon-
struct their behaviors. Finally, we use Android Compatibil-
ity Test Suite (CTS) on our modified Android framework
and the results show that our modification does not affect
the compatibility. The experiments were performed on two
devices; Nexus 6 with Snapdragon 805 CPU (Quad-core 2.7
GHz, 32-bit) and 3GByte RAM, and Nexus 9 with Tegra K1
CPU (Dual-core 2300 MHz, 64-bit) and 2GByte RAM. We
use Android-6.0.1 r42 for Nexus 6 and 6.0.1 r46 for Nexus
9.

4.1 Logging Overhead
Runtime Overhead: In this experiment, we examine
the runtime overhead incurred by DroidForensics. Overhead
was measured by widely used Android benchmark programs
including PCMark for Android [10], 3DMark [1], Antutu [3],
DiscoMark [7], and TabletMark [13].

PCMark simulates basic office work tasks such as web-
browsing, video editing, writing, photo editing and pars-
ing data. 3DMark uses OpenGL ES benchmarks to mea-
sure CPU and GPU performance. Antutu measures perfor-
mance of the device in multiple aspects. For instance, 3D-
test evaluates the performance of 3D rendering, UX exam-
ines the performance of multi-tasking and application execu-
tions, CPU and RAM tests use CPU-intensive and memory
workloads to measure the device performance. DiscoMark
developed at ETH and it opens and closes installed appli-
cations multiple times to measure the application’s launch

time. TabletMark simulates web-browsing, email accessing,
and watching and editing photos and videos. Each bench-
mark execution takes 10 to 60 minutes and we run each
benchmark 5 times and report the average.

Figure 7 shows the runtime overhead. The graph shows
separate results from each test and overall bar represents
a final score reported from each benchmark suite. Web-
browsing benchmark in PCMark shows the highest over-
head, which is 6.16% slower than original Android without
DroidForensics. Overall results show that DroidForensics
only causes negligible runtime overhead (2.58% on average).

Space Overhead: Figure 8 presents the forensic log
size changes over 24 hours. In this experiment, we install
DroidForensics on Nexus 6 and Nexus 9 devices and ask
graduate students to use them for 24 hours. Both Nexus 6
and Nexus 9 cannot use SMS, phone or LTE because Nexus
9 is a wifi-only model and we removed a sim card from Nexus
6 for this experiment. The users stayed wifi-available places
such as home and office over 90% of time during this ex-
periments. We installed Chrome web-borwser, Gmail app,
and a few other utility and game applications before the ex-
periment. We also implemented a simple script app that
records the current size of our forensic log when the user
clicks a button. We ask each user to click the button every
hour until he goes to bed at midnight. Next morning at
8am, the user clicked the button again to get the final log
size. Because we do not have log size data between 12am
to 8am, we present an average rate of log increase during
that period. The results show that Nexus 6 log grows at
4.75MB/hour in a daytime and 3.45MB/hour at night and
the log in Nexus 9 grows at an rate of 8.9MB/hour in a day-
time and 3.2MB/hour at night. Note that DroidForensics
can transfer the log to the server (if wifi is available), but
we did not transfer any log in this experiment. If the user
can use wifi every one hour, average space consumption of
DroidForensics will be 5.6MB on average and 16.21MB in
the worst case. If the user can send the log every 10 minutes,
the device requires only less than 3MB additional storage for
the forensic log. The majority of the logs (97.9%) are sys-
tem call logs, 1.6% of the logs are generated from Binder,
and 0.5% of are from API.

4.2 Effectiveness
We collect 30 real-world Android malware samples and

evaluate DroidForensics on them. We install each malware
package to Android-6.0.1 r42 on Nexus 6 device. Then we
execute a malware while DroidForensics collects forensic logs.
After the execution, we use SQL-like queries to reconstruct

7

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

R
u

n
�

m
e

 O
ve

rh
e

ad

Nexus 6

Nexus 9

PCMark for Android 3DMark Antutu DiscoMark TabletMark

Figure 7: The runtime overhead of DroidForensics

Figure 8: Accumulated log size from the one-day execution.

behaviors of the malware. We start from a query, SELECT *

from API,BIN,SYS where pid=malware_pid;, then we com-
pose additional queries based on the output of the previ-
ous query until we find all relations from the malware pro-
cess. To evaluate the effectiveness of DroidForensics, an-
other graduate student studied each malware with manual
approaches such as understanding various analysis reports
on the web and inspecting the malwares using APK ana-
lyzer, ADB and log-cat. We compare the analysis outputs’
from DroidForensics and the manual inspection.

Table 2 shows the result. The first and second columns
present malware family and package names. The last column
presents the comparison between DroidForensics and the
manual inspection. “Full” represents DroidForensics can dis-
cover all attack behaviors. “Partial” means DroidForensics
misses part of attack behaviors. It happens from two ran-
somware samples, namely LockScreen and FBI.Locker. Both
show similar behaviors. They first lock the device, then send
a SMS message in the background to indicate a succesful in-
fection, and finally display a ransom message (html page)
via Android webview. DroidForensics successfully captures
SMS sending and a ransom message events, but we failed to
capture the behaviors for the device locking. To lock the de-
vice, they manipulate event handlers to hinder the user from
doing any activity on the device. For instance, a malware
overrides event handlers for all actions to home button, back
button, and power button to completely ignore user actions.
Some of touch actions are ignored as well. Our current im-
plementation does not capture function overriding events.
However, we believe this is not a fundamental limitation of
our approach and we plan to support them in near future.
Specifically, if the application overrides any handler, we will
capture the overriding event and records the name of old
and new event handlers.

The columns from third to fifth represent the type of
logs we needed to understand the attack. We mark (X)
if a log is needed in attack reconstruction. For example,
com.android.mms20 malware deletes its launcher icon, then
steals IMEI, IMSI and GPS location. It also collects a list
of installed applications. After that, the malware attempts
to send SMS message to a hard-coded number. We can re-
construct all those behaviors from API and binder logs and
we did not need system call logs to understand the attack.
Apparently, the generated graph from our queries (e.g., SE-
LECT * from API,SYS,BIN where pid=malware;) contains
system call edges, but we can fully reconstruct the attack
without them. It can happen mainly because of the fol-
lowing reasons. First, system calls may not be involved in
the attack behaviors (e.g., SQLite query to memory-loaded
tables). Second, in some cases, we can detect system call
events that contribute the attack, but it can be more clearly
explained by the higher-level logs. For example, mms20 deletes
its launcher icon to hide from the user. We captured two
different events that show deleting application icon event:
1) an API log shows a SQLite query, DELETE FROM icons

WHERE componentName LIKE com.android.mms20;, 2) a sys-
tem call log, pwrite app_icons.db shows a low-level action
that modified app icon.db file. Obviously, the API log is
much clearer and easier to understand. So we do not mark
the system call column for mms20.

The last row (com.nativeCode) is a crafted malware that
uses native components to access files, establish a connec-
tion to C&C server, and send information to the server. As
expected, API and Binder logs are not useful, but we can re-
construct all behaviors from system calls. The results from
this experiment show that all three loggers are essential to
reconstruct attacks. All the samples (except the crafted one)
we have used in this study are publicly available on Contagio
Mobile [6].

8

Malware family Package Name
Is this log needed? Attack

API Binder Syscall Reconstruction?

Worm.Gazon app.rewards.amazon.com.amazonrewards X X X Full
Android. Smsstealer com.dsifakf.aoakmnq X X X Full
Android.Windseeker com.example.windseeker X X X Full
Android.Tetus com.droidmojo.celebstalker X X X Full
AVPass com.lge.clock X X X Full
unknown com.android.mms20 X X Full
BadNews B ru.blogspot.playsib.savageknife X X X Full
CutTheRope com.atools.cuttherope X X X Full
unknown com.android.systemsecurity X X X Full
LockScreen qqkj.qqmagic X X Partial
AngryBird com.elite X X X Full
HongTouTou com.bytedroid.liveprints X X X Full
AndroidArmour com.armorforandroid.security X X Full
unknown com.andnottech.morningandnight X X Full
Android.FakeToken token.generator X X X Full
FantaSDK com.fanta.services X X Full
Pincer.A com.security.cert X X X Full
unknown com.example.android.service X X X Full
Android.Titan com.Titanium.Gloves X X X Full
Qicsomos A org.projectvoodoo.simplecarrieriqdetector X X Full
Android.Exprespam frhfsd.siksdk.ujdsfjkfsd X X Full
FakeInstragram com.software.application X X X Full
unknown il.co.egv X X X Full
HGSpy com.exp.tele X X Full
FBI.Locker com.android.locker X X Partial
Android.Fakeplay com.googleprojects.mmsp X X X Full
Android.Fakenotify B wap.syst X X Full
Android.Fakeinstaller imauyfxuhxd.qhlsrdb X X Full
Android.Fakedaum com.tmvlove X X X Full
Android.Fakebank B com.example.adt X X X Full
crafted com.nativeCode X Full

Table 2: The reconstruction of Android attacks with DroidForensics. Mark (X) means that the log from
that layer is needed to reconstruct an attack. “Full”means DroidForensics discover full attack behaviors, and
“Partial” means DroidForensics misses part of malicious behaviors.

Nexus 6 Nexus 9
Test # of fails

of tests
of fails

of tests
pakages Ori. Our Ori. Our

Access 7 7 316 7 7 316
Device 4 4 53 4 4 53
Core 0 0 2,917 0 0 2,914

Graphic 0 0 1,393 0 0 1,390
Native 0 0 1,060 0 0 1,060
Media 0 0 1,776 0 0 1,776

Contents 0 0 619 0 0 619
Other 0 0 1,127 0 0 1,127

Total 11 11 9,261 11 11 9,254

Table 3: Compatibility Tests. “Ori.” shows a num-
ber of failed tests with original Android and “Our”
shows a number of failed tests with DroidForensics.
Both failed the same set of test cases.

4.3 Compatibility
One may think that DroidForensics can cause compat-

ibility issues because it requires a modification of Android
framework and an additional kernel module. To identify this
concern, we evaluate the compatibility of DroidForensics us-
ing Android Compatibility Test Suite (CTS) [2]. We use
the CTS-public-small plan which contains around 9,200 test
cases. The summarized results are in Table 3. In all tests,
DroidForensics and original Android failed on the same set

of test cases. We believe the failed cases are caused by device
environments, for instance both Nexus 6 and 9 do not have
external SD card and tests that try to access the external
storage failed. The results show that DroidForensics main-
tains the same compatibility-level to compare with original
Android.

5. DISCUSSION
In this section, we discuss limitations and future work of

DroidForensics. First, a kernel-level attacks could disable
DroidForensics. Although we periodically (e.g., every 10
minutes) transfer the log to the outer server, the attacker
can tamper with logs remained in the device. We believe
this is an on-going research area [51, 24] that is orthogonal
to the main focus of DroidForensics.

Second, our prototype uses openat() system calls to trans-
fer API and binder logs (see the section 3.1). If a malicious
application invokes openat() to trick DroidForensics, it can
introduce bogus causal relations (e.g., bogus binder edges in
the output graph), and it will make the investigation diffi-
cult. However, it only introduces false positives but cannot
hide true positives (i.e., malicious behaviors).

We also plan to mitigate this problem as following. We
will add a user-defined system call with three arguments

9

and use the first argument as a secret session keys between
higher-level loggers and system call logger. We plan to build
a simple module that randomly assigns the key at boot-up
time to mitigate the vulnerability.

Third, our binder logger intercepts IPC/RPC in the native
binder library, libbinder.so. Both Java and native codes use
this library to invoke binder calls. However, native compo-
nents can directly invoke ioctl system calls to send binder
message to the binder driver in the kernel. We never observe
that in practice, but it is theoretically possible. Our binder
logger cannot capture them. To address this limitaion, we
can port the binder logger to the binder driver in kernel-
space, then we can capture all binder communications.

Finally, DroidForensics requires manual instrumentation
to Android API functions. In the future, we plan to develop
more automated techniques to determine instrumentation
points including important call-back functions and handlers.
For example, we can leverage DroidAPIMiner [16] to auto-
matically identify instrumentation locations from important
Android APIs, call-backs, and event handlers.

6. RELATED WORK
Forensic Logging: Tracking system-level dependence is a
popular technique for attack analysis in desktop and server
environments [43, 41, 18, 35, 44, 42, 53, 27]. They record
system events (e.g., system calls) during the execution and
interpret them to analyze causal dependences between sys-
tem subjects (e.g., process) and system objects (e.g., net-
work socket or file) to reconstruct an attack. Recently,
BEEP [45], ProTracer [49] and WinLog [48] propose tech-
niques that pro-actively analyze and instrument application
binaries to improve an accuracy of attack reconstruction.
They focus on logging system-level event in desktop or server
systems, however, it is not effective in Android framework
due to it’s unique execution environment, Android Runtime
(ART), and binder IPC protocol. DroidForensics enables
logging in multi-layer to capture accurate information from
different layers, and we provide easy-to-use user interface to
query them.

LogGC [46] proposes a garbage collection techniques for
forensic logs. It removes redundant or unnecessary events
from the log (e.g., accessing temporary files). In the future,
we plan to develop a similar technique for Android to fun-
damentally reduce the size of log.

Recently, Android attack reconstruction techniques have
been proposed. CopperDroid [63] proposes system-call log-
ging and analysis technique for Android attack reconstruc-
tion. CopperDroid is a VMI-based approach and it is built
on top of QEMU [22]. It provide a smart way to analyze
ioctl system call to understand semantics of binder pro-
tocol, but it requires buffer contents of each ioctl and it
might causes too much runtime and space overhead for real
devices. Furthermore, it could miss important events that
can be observed only in higher-layer (e.g., API).

DroidScope [66] is a QEMU-based malware analysis en-
gine that provides the unified view of hardware, kernel and
Android virtual machine (Dalvik). Unfortunately, Droid-
Scope’s analysis engine for Dalvik bytecode is infeasible for
recent Android ART environments. Furthermore, both Droid-
Scope and CopperDroid were build on top of QEMU [22] em-
ulator and it generally incurs high overhead. DroidForensics
supports ART environments, and does not rely emulated en-
vironments but directly works on real devices.

Quire [30] monitors Android binder calls to detect con-
fused deputy problem. It track privileges across inter-process
boundaries. Grover et al. [38] propose an application-level
technique to monitor user activities such as application in-
stall and removal, web browser history, calendar, call log or
contact lists.
Android Taint Tracking: Dynamic taint tracking and
information flow analysis techniques for Android [31, 25,
65, 62] have been proposed to detect information leak or
privilege escalation attacks. Their approaches first assign
tags to provenance sources (e.g., private data objects) and
propagates the tags at each instruction through dependen-
cies captured during the system execution. They can detect
provenance tags that reaches a sink node (e.g., outgoing net-
work socket, SMS message send) that indicate the leakage
of private information. Taint tracking techniques usually re-
quire instruction-level monitoring that causes high run-time
overhead and often requires emulator-based instrumentation
platform such as QEMU [22]. Taint tracking only shows
the flow of the data (what-provenance), but forensic analy-
sis including DroidForensics captures both what- and how-
provenance. Our system is designed for forensic logging, and
comparing with taint tracking techniques, our solution di-
rectly works on real Android devices and has less runtime
overhead.
Other Android Analysis Techniques: Static Analysis
techniques [47, 50, 34, 25, 20] can be used to understand the
behaviors of Android applications. They use APK or Java
code analyzer to detect potentially malicious behaviors from
Android source code. These static techniques are comple-
mentary to DroidForensics. For example, we can use static
analysis as a hint and enhance runtime forensic logging for
potentially malicious code regions.

Android memory forensics techniques [60, 59, 19] recon-
struct the application or device states from a smartphone’s
memory image. Their goal is to recover the current (when
the memory was dumped) state of the device to allow the
user to acquire important evidences such as photo, applica-
tion UIs, or authentication credentials. DroidForensics com-
plements these techniques by logging runtime behaviors of
application to reconstruct the execution. Zhang et al. [67]
proposed a machine learning approach that analyzes net-
work traffic on Android devices to detect stealthy Android
malware activities.

Recording-and-replay based attack forensics are very use-
ful because the user can replay the malicious execution as
many time as he wants. Recently, record-and-replay tech-
niques for Android applications have been studied in the
software engineering community to aid in application de-
bugging [36, 39, 40, 55]. RERAN [36] and Mosaic [39]
use Android SDK’s getevent tool to capture low-level event
streams including graphical user interface (GUI) gestures
(e.g., swipe, zoom, pinch, multi-touch) and sensor events.
However, they are not able to replay inputs from other de-
vices such as GPS, microphone or network. Furthermore,
they are not able to record-and-replay sophisticated activ-
ities [33, 58, 23, 26], as they only record stream inputs.
VALERA [40] statically instruments APK files to capture
Android API calls. It leverages a bytecode rewriting tool to
record and replay API calls. However, VALERA does not
support native code execution [61, 17, 56, 52] and dynamic
code loading [54, 68, 32, 57]. Mobiplay [55] is a client-server
based recording and replay system. Android applications

10

run on a server that emulates the exact same environment
as the mobile phone, and the server transfers a GUI display
to the mobile device that the user interacts with.

7. CONCLUSION
In this paper, we have presented DroidForensics, a multi-

layer forensic logging technique for Android. DroidForensics
captures important Android events from Android API, Binder
and system calls layers. API logger collects information
about Android API calls that contain high-level semantics of
an application. Binder logger captures inter-process commu-
nications that represent causal relations between processes,
and system call logger efficiently monitors low-level system
events. We also develop an easy-to-use interface for An-
droid attack investigation. The user can compose SQL-like
queries to inspect an attack and DroidForensics provides
causal graphs to the user. The user can iteratively refine
queries based on previous results.

Our experiments have shown that DroidForensics has low
runtime overhead (2.9% on avg.) and low space overhead
(up to 168 MByte during 24 hours) on Nexus 6 and Nexus 9
devices. We evaluate DroidForensics with 30 real-world An-
droid malwares and the results show that DroidForensics is
effective in reconstruction of Android attacks. Our compat-
ibility tests present that DroidForensics maintains the same
level of compatibility as original Android.

Acknowledgment
We thank the anonymous reviewers for their insightful com-
ments. This research was, in part, supported by the United
States Air Force and Defense Advanced Research Agency
(DARPA) under Contract No. FA8650-15-C-7562 and funds
from the University of Cincinnati CECH. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily re-
flect the views of our sponsors.

8. REFERENCES
[1] 3dmark. https://www.futuremark.com/benchmarks/

3dmark/android/.

[2] Android compatibility test suite (cts).
https://source.android.com/compatibility/cts/.

[3] Antutu. http://www.antutu.com/en/index.shtml.

[4] Auditdandroid.
https://github.com/nwhusted/AuditdAndroid.

[5] Binder ipc mechanism.
http://www.angryredplanet.com/˜hackbod/
openbinder/docs/html/BinderIPCMechanism.html.

[6] Contagio mobile.
http://contagiominidump.blogspot.com.es/.

[7] Discomakr. https://play.google.com/store/apps/
details?id=ch.ethz.disco.gino.
androidbenchmarkaccessibilityrecorder&hl=en/.

[8] Dtrace. http://dtrace.org/blogs/.

[9] errno - number of last error. http:
//man7.org/linux/man-pages/man3/errno.3.html.

[10] Pcmark for android. https://www.futuremark.com/
benchmarks/pcmark-android/.

[11] Redhat linux audit.
https://people.redhat.com/sgrubb/audit/.

[12] Sysdig. http://www.sysdig.org/.

[13] Tabletmark.
https://bapco.com/products/tabletmark/.

[14] Trojan:android/avpass.c. https://www.f-secure.com/
v-descs/trojan android avpass c.shtml.

[15] Using the linux kernel tracepoints. https://www.
kernel.org/doc/Documentation/trace/tracepoints.txt/.

[16] Y. Aafer, W. Du, and H. Yin. Droidapiminer: Mining
api-level features for robust malware detection in
android. In SecureComm ’13. 2013.

[17] V. Afonso, A. Bianchi, Y. Fratantonio, A. Doupe,
M. Polino, P. d. Geus, C. Kruegel, and G. Vign. Going
native: Using a large-scale analysis of android apps to
create a practical native-code sandboxing policy. In
NDSS ’16.

[18] P. Ammann, S. Jajodia, and P. Liu. Recovery from
malicious transactions. IEEE Trans. on Knowl. and
Data Eng., 2002.

[19] D. Apostolopoulos, G. Marinakis, C. Ntantogian, and
C. Xenakis. Discovering authentication credentials in
volatile memory of android mobile devices. In In
Collaborative, Trusted and Privacy-Aware
e/m-Services, 2015.

[20] D. Arp, M. Spreitzenbarth, H. Malte, H. Gascon, and
K. Rieck. Drebin : Effective and Explainable Detection
of Android Malware in Your Pocket. In NDSS ’14.

[21] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel,
J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel.
Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In
PLDI ’14.

[22] F. Bellard. Qemu, a fast and portable dynamic
translator. In USENIX ATEC ’05.

[23] A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio,
C. Kruegel, and G. Vigna. What the app is that?
deception and countermeasures in the android user
interface. In S&P ’15.

[24] K. D. Bowers, C. Hart, A. Juels, and
N. Triandopoulos. PillarBox: Combating
Next-Generation Malware with Fast Forward-Secure
Logging. In RAID ’14.

[25] Y. Cao, Y. Fratantonio, A. Bianchi, M. Egele,
C. Kruegel, G. Vigna, and Y. Chen. EdgeMiner:
Automatically Detecting Implicit Control Flow
Transitions through the Android Framework. In NDSS
’15.

[26] Q. A. Chen, Z. Qian, and Z. M. Mao. Peeking into
your app without actually seeing it: Ui state inference
and novel android attacks. In Usenix Security ’14.

[27] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum. Understanding data lifetime via whole
system simulation. In SSYM’04.

[28] CVE-2015-3864. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2015-3864.

[29] D. Devecsery, M. Chow, X. Dou, J. Flinn, and
P.M. Chen. Eidetic Systems. In OSDI ’14

[30] M. Dietz, A. Shu, and D. S. Wallach. Quire :
Lightweight Provenance for Smart Phone Operating
Systems. In Usenix Security ’11.

[31] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. . G.
Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N.
Sheth. TaintDroid: an information-flow tracking
system for realtime privacy monitoring on
smartphones. In OSDI’10.

11

https://www.futuremark.com/benchmarks/3dmark/android/
https://www.futuremark.com/benchmarks/3dmark/android/
https://source.android.com/compatibility/cts/
http://www.antutu.com/en/index.shtml
https://github.com/nwhusted/AuditdAndroid
http://www.angryredplanet.com/~hackbod/openbinder/docs/html/BinderIPCMechanism.html
http://www.angryredplanet.com/~hackbod/openbinder/docs/html/BinderIPCMechanism.html
http://contagiominidump.blogspot.com.es/
https://play.google.com/store/apps/details?id=ch.ethz.disco.gino.androidbenchmarkaccessibilityrecorder&hl=en/
https://play.google.com/store/apps/details?id=ch.ethz.disco.gino.androidbenchmarkaccessibilityrecorder&hl=en/
https://play.google.com/store/apps/details?id=ch.ethz.disco.gino.androidbenchmarkaccessibilityrecorder&hl=en/
http://dtrace.org/blogs/
http://man7.org/linux/man-pages/man3/errno.3.html
http://man7.org/linux/man-pages/man3/errno.3.html
https://www.futuremark.com/benchmarks/pcmark-android/
https://www.futuremark.com/benchmarks/pcmark-android/
https://people.redhat.com/sgrubb/audit/
http://www.sysdig.org/
https://bapco.com/products/tabletmark/
https://www.f-secure.com/v-descs/trojan_android_avpass_c.shtml
https://www.f-secure.com/v-descs/trojan_android_avpass_c.shtml
https://www.kernel.org/doc/Documentation/trace/tracepoints.txt/
https://www.kernel.org/doc/Documentation/trace/tracepoints.txt/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3864
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3864

[32] L. Falsina, Y. Fratantonio, S. Zanero, C. Kruegel,
G. Vigna, and F. Maggi. Grab ’n run: Secure and
practical dynamic code loading for android
applications. In ACSAC ’15.

[33] E. Fernandes, Q. Chen, J. Paupore, G. J. Essl,
A. Halderman, Z. M. Mao, and A. Prakash. Android ui
deception revisited: Attacks and defenses. In FC ’16.

[34] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda,
C. Kruegel, and G. Vigna. Triggerscope: Towards
detecting logic bombs in android applications. In S&P
’16.

[35] A. Goel, K. Po, K. Farhadi, Z. Li, and E. de Lara.
The taser intrusion recovery system. In SOSP ’05.

[36] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein.
Reran: Timing- and touch-sensitive record and replay
for android. In ICSE ’13.

[37] M. Grace, Y. Zhou, Z. Wang, and X. Jiang.
Systematic detection of capability leaks in stock
android smartphones. In NDSS ’12.

[38] J. Grover. Android forensics: Automated data
collection and reporting from a mobile device. Digit.
Investig., 2013.

[39] M. Halpern, Y. Zhu, R. Peri, and V. J. Reddi. Mosaic:
cross-platform user-interaction record and replay for
the fragmented android ecosystem. In ISPASS ’15.

[40] Y. Hu, T. Azim, and I. Neamtiu. Versatile yet
lightweight record-and-replay for android. In OOPSLA
’15.

[41] X. Jiang, A. Walters, D. Xu, E. H. Spafford,
F. Buchholz, and Y.-M. Wang. Provenance-aware
tracing ofworm break-in and contaminations: A
process coloring approach. In ICDCS ’06.

[42] T. Kim, X. Wang, N. Zeldovich, and M. F. Kaashoek.
Intrusion recovery using selective re-execution. In
OSDI’10.

[43] S. T. King and P. M. Chen. Backtracking intrusions.
In SOSP ’03.

[44] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M.
Chen. Enriching intrusion alerts through multi-host
causality. In NDSS ’05.

[45] K. H. Lee, X. Zhang, and D. Xu. High accuracy attack
provenance via binary-based execution partition. In
NDSS ’13.

[46] K. H. Lee, X. Zhang, and D. Xu. Loggc: garbage
collecting audit log. In CCS ’13.

[47] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex:
Statically vetting android apps for component
hijacking vulnerabilities. In CCS ’12.

[48] S. Ma, K. H. Lee, C. H. Kim, J. Rhee, X. Zhang, and
D. Xu. Accurate, low cost and instrumentation-free
security audit logging for windows. In ACSAC ’15.

[49] S. Ma, X. Zhang, and D. Xu. Protracer: Towards
practical provenance tracing by alternating between
logging and tainting. In NDSS ’16.

[50] C. Mann and A. Starostin. A framework for static
detection of privacy leaks in android applications. In
SAC ’12.

[51] G. A. Marson and B. Poettering. Practical secure
logging: Seekable sequential key generators. In
ESORICS ’13.

[52] C. Mulliner, W. Robertson, and E. Kirda.
Virtualswindle: An automated attack against in-app
billing on android. In AsiaCCS ’14.

[53] J. Newsome and D. X. Song. Dynamic taint analysis
for automatic detection, analysis, and
signaturegeneration of exploits on commodity
software. In NDSS ’05.

[54] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel,
and G. Vigna. Execute this! analyzing unsafe and
malicious dynamic code loading in android
applications. In NDSS ’14.

[55] Z. Qin, Y. Tang, E. Novak, and Q. Li. Mobiplay: A
remote execution based record-and-replay tool for
mobile applications. In ICSE ’16.

[56] V. Rastogi, Y. Chen, and X. Jiang. Catch me if you
can: Evaluating android anti-malware against
transformation attacks. Trans. Info. For. Sec., 2014.

[57] V. Rastogi, R. Shao, Y. Chen, X. Pan, S. Zou, and
R. Riley. Are these ads safe: Detecting hidden attacks
through the mobile app-web interfaces. In NDSS ’16.

[58] C. Ren, Y. Zhang, H. Xue, T. Wei, and P. Liu.
Towards discovering and understanding task hijacking
in android. In Usenix Security ’15.

[59] B. Saltaformaggio, R. Bhatia, Z. Gu, X. Zhang, and
D. Xu. Guitar: Piecing together android app guis from
memory images. In CCS ’15.

[60] B. Saltaformaggio, R. Bhatia, X. Zhang, D. Xu, and
G. G. R. III. Screen after previous screens:
Spatial-temporal recreation of android app displays
from memory images. In Usenix Security ’16.

[61] M. Sun and G. Tan. Nativeguard: Protecting android
applications from third-party native libraries. In
WiSec ’14.

[62] M. Sun, T. Wei, and J. C.S.Lui. TaintART: A
Practical Multi-level Information-Flow Tracking
System for Android RunTime. In CCS ’16.

[63] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro.
CopperDroid: Automatic Reconstruction of Android
Malware Behaviors. In NDSS ’15.

[64] F. Wei, S. Roy, X. Ou, and Robby. Amandroid: A
precise and general inter-component data flow analysis
framework for security vetting of android apps. In
CCS ’14.

[65] M. Xia, L. Gong, Y. Lyu, Z. Qi, and X. Liu. Effective
real-time android application auditing. In S&P ’15.

[66] L. K. Yan and H. Yin. DroidScope : Seamlessly
Reconstructing the OS and Dalvik Semantic Views for
Dynamic Android Malware Analysis. In Usenix
Security ’12.

[67] H. Zhang, D. D. Yao, and N. Ramakrishnan.
Causality-based sensemaking of network traffic for
android application security. In AISec ’16.

[68] Y. Zhauniarovich, M. Ahmad, O. Gadyatskaya,
B. Crispo, and F. Massacci. Stadyna: Addressing the
problem of dynamic code updates in the security
analysis of android applications. In CODASPY ’15.

[69] Y. Zhou and X. Jiang. Detecting passive content leaks
and pollution in android applications. In NDSS ’12.

12

	Introduction
	System Overview and Motivating Example
	System Details
	Android API Logging
	Binder Logging
	System call Logging
	User Interface

	Evaluation
	Logging Overhead
	Effectiveness
	Compatibility

	Discussion
	Related Work
	Conclusion
	References

