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ABSTRACT  
Nonvolatile RAM (NVRAM) technology is advancing 
rapidly with 1-2Mb capacity single-chip prototypes 
becoming available from major semiconductor 
companies. We will soon see NVRAM become an 
everyday component of our commodity computers. This 
paper explores the use of NVRAM as part of the buffer 
cache. A nonvolatile buffer cache provides a computer 
system with a means to maintain complete consistency as 
well as improved performance. The results of this paper 
can be summarized as follows. First, we show that the hit 
ratio that has been a commonly used metric to measure 
buffer cache performance is no longer adequate for caches 
with NVRAM. Instead of the hit ratio, we need to count 
the number of disk accesses to assess user perceived 
cache performance. Second, we show that because of this 
change in performance metric, when managing a buffer 
cache with NVRAM, one can do better than when using 
the MIN replacement algorithm mainly by distinguishing 
read and write operations. With this, we show that there is 
room for improvement in efficiently handling caches with 
NVRAM. Finally, based on these findings, we propose a 
simple and practical buffer management technique that 
improves on using the LRU algorithm. 
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1.  Introduction 
Nonvolatile RAM (henceforth, referred to as NVRAM) 
technology is advancing rapidly with 1-2Mb capacity 
single-chip prototypes becoming available from major 
semiconductor companies. Yet, there have only been a 
limited research interest in relation to NVRAM. 

Assuming the computer system is equipped with 
NVRAM, this paper focuses on using NVRAM as part of 
the buffer cache. In this regard, we make three 
contributions. First, we show that the hit ratio that has 
been a commonly used metric to measure buffer cache 
performance is no longer adequate for caches with 
NVRAM. Instead of the hit ratio, we need to count the 
                                                 
 

number of disk accesses to assess cache performance. 
Second, we show that because of this change in 
performance metric, when managing a buffer cache with 
NVRAM, one can do better than when using the MIN 
replacement algorithm mainly by distinguishing read and 
write operations. With this, we show that there is room for 
improvement in efficiently handling caches with 
NVRAM. Finally, based on these findings, we propose a 
practical buffer management technique that will improve 
the performance of conventional practical policies. 

In the remainder of this section, we shortly describe the 
current changes that are happening in regards to 
NVRAM. Then, we review some of the related works that 
have considered NVRAM as a system component. As 
there are many facets in improving performance with the 
use of NVRAM, we clearly state the assumptions that we 
make in this study. In Section 2, we describe why the hit 
ratio is no longer the appropriate performance metric 
when using NVRAM cache. We then show that the MIN 
algorithm can be improved when the performance metric 
of interest changes. Based on these results, in Section 3, 
we quantify the benefit that is obtainable in a practical 
replacement algorithm, specifically, LRU. We then 
propose a scheme that is implementable in real life. 
Finally, in Section 4, we give a summary of the work and 
end with conclusions. 
 
1.1 NVRAM, Related Works, and Assumptions 
Studies in using NVRAM are not new. Research results 
on this issue were published in the early 1990’s. 
However, NVRAM envisioned at the time was RAM with 
battery support. Hence, the use of NVRAM was not 
considered common. 

Today, it is a different story. NVRAM is being realized 
in many forms. MRAM (Magnetic RAM), PRAM (Phase-
change RAM), FeRAM (Ferro electro RAM) are some of 
the more commonly talked-about NVRAM [10]. They are 
being developed by major semiconductor companies such 
Texas Instruments, IBM, Samsung, Fujitsu, Motorola, etc. 
1-2Mb chips are already being sold, and these chips are, 
supposedly, fully compatible with SRAM, meaning that 
installing them to everyday computer systems should not 
be a difficult task (though not to be done by a layman as if 
installing a new program) [11]. As semiconductor 



technology continue to make progress we will soon see 
NVRAM become an everyday component of our 
commodity computers. However, research on what effects 
NVRAM has on computer systems and software and how 
to make efficient use of NVRAM have been limited. 

Specifically, previous research on software issues 
related to NVRAM can be viewed as being directed in 
two directions. One is using NVRAM as an extension of 
storage and thus, maintaining metadata in this part of 
storage. Miller et al. introduces the HeRMES file system 
that makes use of MRAM to store metadata, while storing 
file data in disk [6]. Another file system, MRAMFS, uses 
a similar approach as HeRMES, but it utilizes 
compression on inodes in order to save NVRAM space as 
the authors assume that NVRAM is a scarce resource [4]. 
Finally, Conquest is another file system being developed 
with NVRAM in mind [7]. Conquest considers storing not 
only metadata, but also small sized files while leaving 
large files on disk. 

The other direction of research with NVRAM considers 
one specific aspect of the file system, that is, the buffer 
cache. Since real systems generally tend to use the copy-
back policy for writes due to performance reasons, there 
is always a window of time in which consistency of the 
file system may be compromised. By making writes to 
NVRAM, this window of consistency loss can be 
removed, and consistency can be maintained in full 
without compromising performance. It was shown by 
Baker et al. that write traffic can be significantly reduced 
with the help of NVRAM [2]. For management of the 
buffer space, they compare the LRU and random 
replacement algorithms and show that the two schemes 
show little difference in reducing write traffic to disk. 
Haining and Long propose algorithms for NVRAM write 
buffer management; specifically, LRU, shortest access 
time first (STF), and largest segment per track (LST) [5]. 
They not only consider the issue of replacement, but also 
consider the issue of staging, that is, when to clean the 
dirty blocks in cache. They report that in most cases LRU 
is most effective. Finally, Akyurek and Salem perform an 
extensive simulation study on managing NVRAM buffers 
[1]. They propose and categorize policies based on the 
actions taken upon a read miss and on write allocation. 

The topic of this paper is also buffer management. To 
set the stage of our discussion we need to make clear the 
assumptions in which we are presenting the work. We 
will also present in more detail the LRU Volatile and 
LRU Global algorithms proposed by Akyuket and Salem 
as they are used to present subsequent results.  

To ease the discussion, we use the following 
terminology throughout. The traditional form of buffer 
cache, that is, one with all volatile memory is called a 
volatile cache. A buffer cache where volatile memory and 
nonvolatile memory coexist, will be referred to as a 
nonvolatile cache. The volatile memory part of a cache is 
referred to as volatile space and the nonvolatile memory 
part is referred to as nonvolatile space. 
The assumptions we make about the buffer is as follows. 

1. [Write Nonvolatile Assumption] We assume that all 
writes are done in NVRAM only. Hence, consistency 
is always guaranteed. Writes to disk happens only 
when an eviction from NVRAM occurs. This is in 
line with the ‘Update Rule’ discussed by Akyurek 
and Salem [1]. 

2. [Clean Separation Assumption] With nonvolatile 
cache, all dirty blocks reside in nonvolatile space and 
all clean blocks reside in volatile space only. 
Management of the two spaces is done separately 
and independently. 

3. [No Staging Assumption] No form of staging is 
happening, that is, there is no extra effort to stage the 
dirty blocks. Hence, a dirty block is evicted to disk 
only when nonvolatile space overflows. 

Let us now discuss the LRU Volatile and LRU Global 
algorithms. These algorithms are employed upon a read 
miss. (Henceforth, for simplicity, we will denote LRU 
Volatile and LRU Global as LRU-V and LRU-G, 
respectively.) With LRU-V, when a read miss occurs, the 
victim block to be evicted is the LRU block found in 
volatile space. Thus, the incoming block will reside in 
volatile space as well. With LRU-G, when a read miss 
occurs, the victim block is the global LRU block, that is, 
the LRU block among all blocks residing in volatile and 
nonvolatile space. Hence, note that the incoming (clean) 
block may reside in nonvolatile space if the global LRU 
block was found in nonvolatile space. This is in violation 
of the ‘Clean Separation Assumption’. This is the only 
case where any of our assumptions will be violated, and 
we use LRU-G only to give motivation to this work. 
 
1.2 Experimental Setup of the Study 
Figure 1 depicts the experimental setup used in this study.  
 

 
 

The simulator is implemented in three layers. The top 
layer is the file system simulator that simulates the 
System V UNIX file system. The buffer cache simulator 
layer runs separately from the file system layer. Various 
forms of buffer caches are implemented at this level to 
compare their effects. To consider user perceived 
response time performance, the DiskSim disk simulator 
layer is used. DiskSim 3.0, which is the current most 
version publicly available, is used [9]. We use parameters 
for the Seagate Cheetah9LP disk, which is of size 9.1GB, 
as this is the largest disk that can currently be simulated 
by DiskSim. 
 

Figure 1: Organization of the simulation environment
used to obtain the experimental results. 

File System Simulator 

Buffer Cache Simulator 

DiskSim 3.0 



Table 1: Characteristics of the TPC-C trace and the 
reduced trace that is used in our experiments. 
 

The trace used to drive the simulator is based on TPC-C 
[8]. Due to the size limitation of DiskSim and our 
simulation environment, however, we reduced the full 

TPC-C trace to 1/200 of the original. This was done by 
randomly selecting one reference out of every ten 
references, then taking the front part of the resulting trace. 
For all our experiments, the buffer cache is warmed up 
with the first 1/100 portion of the reduced trace before 
results are obtained with the following 1/20 part of the 
trace. The characteristics of the reduced trace as 
compared with the original TPC-C trace are shown in 
Table 1. 
 
2.  Hit Ratio is No Longer the Adequate  
     Performance Metric with Nonvolatile  
     Cache 
In traditional buffer cache replacement research the hit 
ratio is a common metric that is used to compare the 
performance of replacement schemes. Though the hit ratio 
metric may not be an exact representation of performance 
in real systems due to varies system implementation 
overhead, it does provide a close indication of what kind 
of performance to expect in reality. Hence, this metric has 
been widely used. In this section, we show that for 
nonvolatile buffer caches, however, the hit ratio is no 
longer the appropriate indicator of performance. We show 
that with nonvolatile caches, instead of the hit ratio, using 
the number of disk accesses directly is more appropriate. 
Based on this observation, we show that using the MIN 
replacement algorithm is no longer optimal (when the 
number of disk accesses is the metric of interest), but that 
improvements to using MIN can be made by 
distinguishing read and write operations. 
2.1 Hit Ratio Not a Good Indicator of User Perceived 
Performance 

Figure 2 shows the performance of LRU-V and LRU-G. 
Figure 2(a) shows the hit ratio of the two algorithms, 
while Figure 2(b) shows the response time. The x-axis for 
both results is the proportion of nonvolatile space in 
nonvolatile cache ranging from 10% to 90% of the total 
cache size. 

An interesting observation can be made in the 10% to 
40% range of these two graphs. Figure 2(a) shows that the 
hit ratio of LRU-G is always higher than that of LRU-V. 
However, from Figure 2(b), we see that for the same 
range LRU-V shows better response time than LRU-G. 
This is rather peculiar as if the hit ratio is high, then one 
would expect the response time perceived by the user to 
be shorter. To understand the reason behind this 
discrepancy, let us review the actions taken when a 
reference is made to the buffer cache.  
 
Table 2: Number of disk accesses for hit/miss with 
read/write operations in volatile and nonvolatile caches. 
(*Though the value in Hit-Write of Volatile buffer cache 
should be 1 to maintain consistency, systems generally 
use the copy-back policy for performance reasons. In this 
more common case, there is no disk access. Hence, we 
mark this space as 0.) 

 
 

Table 2 compares the number of disk accesses that are 
made when hit/miss occurs on volatile and nonvolatile 
caches. From this table, we observe two peculiar 
phenomena. First, in the nonvolatile cache there is a disk 
access even upon a hit on a write. In traditional caches, 
when a hit occurs, no disk access will occur. (With the 
write-through policy one disk access will occur, but this 
policy is generally avoided due to performance 
degradation. Hence, we denote it as incurring zero 
accesses.) This disk access can be explained with Figure 

 TPC-C Trace Reduced Trace 

Total Request 99.4 GB 497.2 MB 

Reference Set 16.9 GB 200.2 MB 

Read Request 84.2GB(84.65%) 394.8MB(79.4%) 

Write Request 15.2GB(15.34%) 102.4MB(20.6%) 

(a) Hit ratio (b) Response time 
Figure 2: Performance comparison between the LRU-V and LRU-G nonvolatile management policies. 
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3(a). Consider a write request to Block 10, which is found 
in volatile space. This is a write operation, and since the 
‘Write Nonvolatile Assumption’ states that blocks must 
be written in nonvolatile space, we need to move the 
newly written block to nonvolatile space. When this 
happens, a block in nonvolatile space needs to be 
removed and written to disk. Hence, a disk access 
happens even on a hit upon write.  

The second peculiar phenomenon is that two disk 
accesses may occur upon a read miss. This is explained 
using Figure 3(b). Say Block 20 is being read and a cache 
miss occurs. Block 20 must be brought in from disk, 
hence one disk access. As one block is fetched, one block 
must be replaced. If the victim block to be evicted is 
found in nonvolatile space (which can happen only with 

policies such as LRU-G), this block must be written back 
to disk, and hence the second disk access. (Note that this 
violates the ‘Clean Separation Assumption’.) Since in 
LRU-V all read requests are serviced only in volatile 
space, this situation cannot arise.  

 
From these observations, we come to two important 

findings. The first is that unlike traditional caches, 
distinguishing read and write operations is important for 
nonvolatile caches. The second is that the number of 
cache misses is not synonymous with the number of disk 
accesses, which is a major performance indicator of cache 
performance. 

The reason behind the performance discrepancy found 
in Figure 2 can be explained from these observations. 

Even though the hit ratio using LRU-G is higher than that 
of LRU-V, the number of disk accesses was actually 
greater with LRU-G. Hence, for nonvolatile caches, the 
hit ratio is no longer the appropriate indicator of cache 
performance, but rather, the number of disk accesses 

should be used directly. This is evidenced in Figure 4, 
where Figure 4(a) is the same figure shown in Figure 
2(b), that is, the response time when using the two 
policies, and Figure 4(b) is the number of disk accesses 
that occur due to each policy. We see that, indeed, the 
number of disk accesses is a good representation of user 
perceived performance. 
 
2.2 Performance Better than MIN in Nonvolatile   

Caches 
Belady’s MIN algorithm is the proven optimal 
replacement algorithm for traditional volatile cache 
management [3]. Using hit ratio as the performance 
metric, Belady proves that MIN will achieve the highest 
hit ratio when replacing the block that will be used 
furthest in the future. Though unrealizable because one 
cannot know future references, MIN has served the buffer 
management research community by setting a goal to 
reach, since traditionally the hit ratio is a close indicator 
of user perceived performance for volatile caches.  

A similar question can be raised with nonvolatile 
caches. Given that we somehow know the future, what is 
the best management policy possible with nonvolatile 
caches? Is MIN still the best policy? In an attempt to 
answer these questions we use the MIN algorithm as the 
underlying policy. Recall, however, that MIN was 
optimized for the hit ratio metric. Since for nonvolatile 
cache the hit ratio is  

no longer the appropriate performance metric we choose 
to use the number of disk accesses as suggested in the 
previous section. Also, because of the ‘Clean Separation 
Assumption’, we employ the MIN policy at each space 
separately 

To minimize the number of disk accesses, again we start 
from Table 2. Here, we had observed two situations 
where an extra disk access occurs aside from the norm. 
The first is when a write hit occurs in volatile space and 
the second is when a read miss replaces a dirty block from 
nonvolatile space. Since the second situation can arise 
only when volatile and nonvolatile space is managed 
together, we do not consider this situation in this paper as 

this violates the ‘Clean Separation Assumption’.  
Let us now concentrate on the first situation. When a 

write hit occurs in volatile space, the dirty block must be 
moved to nonvolatile space. This move will force a 
replacement of a dirty victim block, resulting in a write 

(a) Response time (b) Number of disk accesses 
Figure 4: Performance comparison between the LRU-V and LRU-G nonvolatile management policies 

Figure 3: Actions taken in a nonvolatile cache. 
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disk access. This disk access is inevitable. The question is 
what we can do to improve performance. The answer is 
that since a write hit in volatile space will lead to a miss 
anyway, anytime we need to find a victim block due to a 
miss we look for a block that will write hit in volatile 
space with its next reference. This will allow the would-
be victim block (the block to be referenced furthest in the 
future) to not be evicted and be kept in cache longer, 
helping improve performance. We will refer to this policy 
as MIN+ to simplify the discussion.  
 

 
Figure 5: Example of cache state evolution using MIN 
and MIN+.  

Consider the example depicted in Figure 5. There are a 
total of five cache blocks in this nonvolatile cache, of 
which three comprise volatile space (represented by the 
clear blocks) and two comprise nonvolatile space 
(represented by the shaded blocks).  Blocks 1, 2, and 3 are 
currently residing in volatile space and Blocks 4 and 5 are 
residing in nonvolatile space. The reference string 
references Blocks 6,3,2,1 with the R and W values in 
parenthesis indicating Read and Write references, 
respectively. Recall that volatile and nonvolatile spaces 
are being managed separately with MIN. The Hit/Miss 
column indicates the hit or miss incurred by the particular 
reference and the Disk Access column indicates whether a 
disk access is incurred with the reference.  

Upon read reference to Block 6 a miss occurs with the 
MIN algorithm and of the 3 blocks in volatile space Block 
1 is replaced since it is referenced furthest in the future. 

For MIN+, the same miss occurs, but instead of Block 1, 
Block 3 is replaced because the next reference to Block 3 
is a write.  

The next reference is a write to Block 3. For MIN, this 
is a write hit in volatile space, hence we move Block 3 to 
nonvolatile space leading to an eviction of Block 4. 
(Block 5 could have been evicted here without altering 
the discussion.) For MIN+, it is a miss to nonvolatile 
space. Hence, Block 4 is evicted and replaced with Block 
3. We see here that a disk access due to Block 3 is 
inevitable for both MIN and MIN+. 

The third reference to Block 2 is a hit for both cases. 
Finally, the last reference is a read reference to Block 1. 
This is where MIN and MIN+ differ. By not having 
evicted Block 1 when Block 6 was referenced, and instead 
having had evicted Block 3, which was useless in volatile 
space anyway, MIN+ is able to save a disk access with 
this last access.  

We see that even though the total hit/miss count for 
MIN and MIN+ is identical, we find that the number of 
disk accesses may be reduced by evicting blocks in 
volatile space that will write with its next reference, 
instead of evicting blocks that will be referenced in the 
furthest future, as is done with MIN. 

Figure 6 compares the performance of MIN and MIN+ 
obtained through simulations. We see that MIN can be 
improved by distinguishing read and write operations and 
evicting blocks with next write references from volatile 
space. 
 
3.  Putting Theory into Practice 
In the previous section, we showed that performance of 
using the MIN algorithm may be improved (in terms of 
the number of disk accesses) by selecting a victim block 
from volatile space whose next reference is a write. In this 
section, we show that this is also applicable to practical 
algorithms in use today, specifically, the LRU algorithm. 
In the first part of this section, we use the crystal ball 
approach and quantify the improvement that is possible 
when future knowledge is available. In the latter part of 
the section, we present a scheme that is more practical in 
that it is based on acquired history. 

(a) Number of disk accesses (b) Response time 
Figure 6: Performance comparison of MIN and MIN+ 
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3.1 Improving LRU with a Crystal Ball 
We showed that for nonvolatile cache MIN could be 
improved by distinguishing reads and writes to volatile 
and nonvolatile space. Using the same technique used 
with MIN+, here, we show that similar improvements are 
possible with practical replacement algorithms such as 
LRU. The improvements are experimentally quantified in 
this section.  

Assuming that we have a crystal ball that tells us 
whether the next reference is a write or a read, the LRU 
replacement algorithm can be augmented with the same 
technique used with MIN+ so that the block whose next 
reference is a write is evicted from cache. This is 
implemented in the following manner. (We call this 
modified algorithm LRU+.) Whenever a block is brought 
into volatile space due to a miss or is hit in volatile space, 
the block is checked to see if its next reference is a write 
or a read. If it is a read, then, as is normally done, we 
move this block to the MRU-end of the LRU list. If it is a 
write, then this block is the next candidate to be evicted. 
Hence, it is moved to the LRU-end of the LRU list. 

Figure 7 shows the performance difference between 
LRU and LRU+. The results clearly show that the number 
of disk accesses is an efficient indicator for user perceived 
response time performance and that there is room for 
improvement in the management of the buffer cache. For 
a wide range of nonvolatile space sizes, the improvement 
in performance is steadily in the 7 to 8% range. 
 
3.2 Write History based LRU 
In the previous subsection, we showed that there is room 
for improvement in managing nonvolatile cache. 
Unfortunately, LRU+ required future knowledge, which, 
in reality, is not easy to come by. Here, we propose a  

 
more feasible scheme based on the observations of the 
previous sections. The key point in improving 
performance as described in the previous sections is that 
blocks in volatile space with next write reference should 
not hold a cache block as it will be of no benefit anyway. 
Hence, devising a scheme to correctly guess a write 
access is crucial.  

Observe from Figure 8 the write reference behavior of 
blocks used in our experiments. Figure 8(a) shows the 
absolute frequency of write reference gaps. A write 
reference gap is the number of read references between 
two write references. That is, for every number of read 
references between two write references we count all such 
occurrences. These values are plotted in Figure 8(a). For 
example, there are roughly 18,000 occurrences where 
there is zero read reference between two write references. 
Figure 8(b) shows the relative cumulative frequency 
(accumulated percentage) of these counts. Note that the 
majority of writes come in succession and roughly 95% of 
writes have less than 3 reads between write references. 
This means that when a write reference occurs another 
write will occur in close proximity. 

Based on this observation, we devise a crude, but simple 
history based scheme where we keep a list of blocks that 
have been write referenced, which we will call the write-
history list. When a block that is headed to volatile space 
is referenced (whether on a miss or a hit) we check the 
write-history list to see if a write reference on that block 
had occurred previously. If it had, the block is placed at 
the LRU-end of the LRU list. This block is retained on the 
LRU side of the LRU list (even upon a subsequent read 
hit) until evicted. Otherwise, it is placed on the MRU-end 
as would be done normally. Cache management in 
nonvolatile space remains unchanged. We call this 

Figure 8: Write reference behavior observed for the trace used. 

(a) Absolute frequency of write reference gaps  (b) Accumulated percentage 

(a) Number of disk accesses (b) Response time 
Figure 7: Performance comparison of LRU and LRU+. 
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scheme LRU-WH (for Write History). Note that though 
this scheme is employed with the LRU policy for this 
study, the write-history scheme may be employed 
independently with any other replacement policy. 

Figure 9 shows the performance results of LRU-WH as 
compared with simply using LRU. The improvement 
obtained in these experiments is in the 1% range. This is 
nominal compared to the achievable improvement shown 
in Figure 7. The significance of this result is that the 
improvement was achieved through a crude, first-time 
attempt. Research to come up with a better scheme is 
continuing even as we write.  
 
4.  Summary and Conclusion 
A nonvolatile buffer cache provides a computer system 
with a means to maintain complete consistency as well as 
improve performance. The results of this paper in regards 
to nonvolatile buffer cache can be summarized as follows. 
First, we showed that the hit ratio that has been a 
commonly used metric to measure buffer cache 
performance is no longer adequate for caches with 
NVRAM. Instead of the hit ratio, we need to count the 
number of disk accesses to assess user perceived cache 
performance. Second, we showed that because of this 
change in performance metric, when managing a buffer 
cache with NVRAM, one can do better than when using 
the MIN replacement algorithm mainly by distinguishing 
read and write operations. With this, we showed that  
there is room for improvement in efficiently handling 
caches with NVRAM. Finally, based on these findings, 
we proposed a simple and practical buffer management 
technique, LRU-WH, that improves on LRU by a nominal 
1%. 

The results here have only set the groundwork for much 
more research to be done. Admittedly, the experiments 
were conducted with only one set of traces, hence we 
need to consider traces that have a variety of 
characteristics. The LRU-WH, though a good starting 
point, is not satisfactory. There certainly should be a way 
to do better, and this needs to be explored as well. The 
three assumptions of this paper are not stone-graved. 
They could be relaxed in one way or another. How this 
will influence the analytical results as well as the 
experimental results are some of the questions that are 
still open and need to be answered. 
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(a) Number of disk accesses (b) Response time 
Figure 9: Performance comparison of LRU and LRU-WH. 
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