

WRITE-AWARE BUFFER CACHE MANAGEMENT SCHEME
FOR NONVOLATILE RAM

Kyu Hyung Lee*, In Hwan Doh*, Jongmoo Choi**, Donghee Lee+, Sam H. Noh*

*Department of Computer Engineering, Hongik University, 72-1 Sangsu-dong, Mapo-gu, Seoul
**Division of Information and Computer science, Dankook University, San 8, Hannam-Dong, Yongsan-gu, Seoul

+School of Computer Science, University of Seoul, Jeonnong 3-dong, Dongdaemun-gu, Seoul
Republic of Korea

*{lkh, ihdoh, samhnoh}@cs.hongik.ac.kr, **choijm@dankook.ac.kr, +dhlee@venus.uos.ac.kr

ABSTRACT
Nonvolatile RAM (NVRAM) technology is advancing
rapidly with 1-2Mb capacity single-chip prototypes
becoming available from major semiconductor
companies. We will soon see NVRAM become an
everyday component of our commodity computers. This
paper explores the use of NVRAM as part of the buffer
cache. A nonvolatile buffer cache provides a computer
system with a means to maintain complete consistency as
well as improved performance. The results of this paper
can be summarized as follows. First, we show that the hit
ratio that has been a commonly used metric to measure
buffer cache performance is no longer adequate for caches
with NVRAM. Instead of the hit ratio, we need to count
the number of disk accesses to assess user perceived
cache performance. Second, we show that because of this
change in performance metric, when managing a buffer
cache with NVRAM, one can do better than when using
the MIN replacement algorithm mainly by distinguishing
read and write operations. With this, we show that there is
room for improvement in efficiently handling caches with
NVRAM. Finally, based on these findings, we propose a
simple and practical buffer management technique that
improves on using the LRU algorithm.

KEY WORDS
Computer Architecture, NVRAM (Non Volatile RAM),
Buffer Cache, Hit Ratio, Performance Metric

1. Introduction
Nonvolatile RAM (henceforth, referred to as NVRAM)
technology is advancing rapidly with 1-2Mb capacity
single-chip prototypes becoming available from major
semiconductor companies. Yet, there have only been a
limited research interest in relation to NVRAM.

Assuming the computer system is equipped with
NVRAM, this paper focuses on using NVRAM as part of
the buffer cache. In this regard, we make three
contributions. First, we show that the hit ratio that has
been a commonly used metric to measure buffer cache
performance is no longer adequate for caches with
NVRAM. Instead of the hit ratio, we need to count the

number of disk accesses to assess cache performance.
Second, we show that because of this change in
performance metric, when managing a buffer cache with
NVRAM, one can do better than when using the MIN
replacement algorithm mainly by distinguishing read and
write operations. With this, we show that there is room for
improvement in efficiently handling caches with
NVRAM. Finally, based on these findings, we propose a
practical buffer management technique that will improve
the performance of conventional practical policies.

In the remainder of this section, we shortly describe the
current changes that are happening in regards to
NVRAM. Then, we review some of the related works that
have considered NVRAM as a system component. As
there are many facets in improving performance with the
use of NVRAM, we clearly state the assumptions that we
make in this study. In Section 2, we describe why the hit
ratio is no longer the appropriate performance metric
when using NVRAM cache. We then show that the MIN
algorithm can be improved when the performance metric
of interest changes. Based on these results, in Section 3,
we quantify the benefit that is obtainable in a practical
replacement algorithm, specifically, LRU. We then
propose a scheme that is implementable in real life.
Finally, in Section 4, we give a summary of the work and
end with conclusions.

1.1 NVRAM, Related Works, and Assumptions
Studies in using NVRAM are not new. Research results
on this issue were published in the early 1990’s.
However, NVRAM envisioned at the time was RAM with
battery support. Hence, the use of NVRAM was not
considered common.

Today, it is a different story. NVRAM is being realized
in many forms. MRAM (Magnetic RAM), PRAM (Phase-
change RAM), FeRAM (Ferro electro RAM) are some of
the more commonly talked-about NVRAM [10]. They are
being developed by major semiconductor companies such
Texas Instruments, IBM, Samsung, Fujitsu, Motorola, etc.
1-2Mb chips are already being sold, and these chips are,
supposedly, fully compatible with SRAM, meaning that
installing them to everyday computer systems should not
be a difficult task (though not to be done by a layman as if
installing a new program) [11]. As semiconductor

technology continue to make progress we will soon see
NVRAM become an everyday component of our
commodity computers. However, research on what effects
NVRAM has on computer systems and software and how
to make efficient use of NVRAM have been limited.

Specifically, previous research on software issues
related to NVRAM can be viewed as being directed in
two directions. One is using NVRAM as an extension of
storage and thus, maintaining metadata in this part of
storage. Miller et al. introduces the HeRMES file system
that makes use of MRAM to store metadata, while storing
file data in disk [6]. Another file system, MRAMFS, uses
a similar approach as HeRMES, but it utilizes
compression on inodes in order to save NVRAM space as
the authors assume that NVRAM is a scarce resource [4].
Finally, Conquest is another file system being developed
with NVRAM in mind [7]. Conquest considers storing not
only metadata, but also small sized files while leaving
large files on disk.

The other direction of research with NVRAM considers
one specific aspect of the file system, that is, the buffer
cache. Since real systems generally tend to use the copy-
back policy for writes due to performance reasons, there
is always a window of time in which consistency of the
file system may be compromised. By making writes to
NVRAM, this window of consistency loss can be
removed, and consistency can be maintained in full
without compromising performance. It was shown by
Baker et al. that write traffic can be significantly reduced
with the help of NVRAM [2]. For management of the
buffer space, they compare the LRU and random
replacement algorithms and show that the two schemes
show little difference in reducing write traffic to disk.
Haining and Long propose algorithms for NVRAM write
buffer management; specifically, LRU, shortest access
time first (STF), and largest segment per track (LST) [5].
They not only consider the issue of replacement, but also
consider the issue of staging, that is, when to clean the
dirty blocks in cache. They report that in most cases LRU
is most effective. Finally, Akyurek and Salem perform an
extensive simulation study on managing NVRAM buffers
[1]. They propose and categorize policies based on the
actions taken upon a read miss and on write allocation.

The topic of this paper is also buffer management. To
set the stage of our discussion we need to make clear the
assumptions in which we are presenting the work. We
will also present in more detail the LRU Volatile and
LRU Global algorithms proposed by Akyuket and Salem
as they are used to present subsequent results.

To ease the discussion, we use the following
terminology throughout. The traditional form of buffer
cache, that is, one with all volatile memory is called a
volatile cache. A buffer cache where volatile memory and
nonvolatile memory coexist, will be referred to as a
nonvolatile cache. The volatile memory part of a cache is
referred to as volatile space and the nonvolatile memory
part is referred to as nonvolatile space.
The assumptions we make about the buffer is as follows.

1. [Write Nonvolatile Assumption] We assume that all
writes are done in NVRAM only. Hence, consistency
is always guaranteed. Writes to disk happens only
when an eviction from NVRAM occurs. This is in
line with the ‘Update Rule’ discussed by Akyurek
and Salem [1].

2. [Clean Separation Assumption] With nonvolatile
cache, all dirty blocks reside in nonvolatile space and
all clean blocks reside in volatile space only.
Management of the two spaces is done separately
and independently.

3. [No Staging Assumption] No form of staging is
happening, that is, there is no extra effort to stage the
dirty blocks. Hence, a dirty block is evicted to disk
only when nonvolatile space overflows.

Let us now discuss the LRU Volatile and LRU Global
algorithms. These algorithms are employed upon a read
miss. (Henceforth, for simplicity, we will denote LRU
Volatile and LRU Global as LRU-V and LRU-G,
respectively.) With LRU-V, when a read miss occurs, the
victim block to be evicted is the LRU block found in
volatile space. Thus, the incoming block will reside in
volatile space as well. With LRU-G, when a read miss
occurs, the victim block is the global LRU block, that is,
the LRU block among all blocks residing in volatile and
nonvolatile space. Hence, note that the incoming (clean)
block may reside in nonvolatile space if the global LRU
block was found in nonvolatile space. This is in violation
of the ‘Clean Separation Assumption’. This is the only
case where any of our assumptions will be violated, and
we use LRU-G only to give motivation to this work.

1.2 Experimental Setup of the Study
Figure 1 depicts the experimental setup used in this study.

The simulator is implemented in three layers. The top
layer is the file system simulator that simulates the
System V UNIX file system. The buffer cache simulator
layer runs separately from the file system layer. Various
forms of buffer caches are implemented at this level to
compare their effects. To consider user perceived
response time performance, the DiskSim disk simulator
layer is used. DiskSim 3.0, which is the current most
version publicly available, is used [9]. We use parameters
for the Seagate Cheetah9LP disk, which is of size 9.1GB,
as this is the largest disk that can currently be simulated
by DiskSim.

Figure 1: Organization of the simulation environment
used to obtain the experimental results.

File System Simulator

Buffer Cache Simulator

DiskSim 3.0

Table 1: Characteristics of the TPC-C trace and the
reduced trace that is used in our experiments.

The trace used to drive the simulator is based on TPC-C
[8]. Due to the size limitation of DiskSim and our
simulation environment, however, we reduced the full

TPC-C trace to 1/200 of the original. This was done by
randomly selecting one reference out of every ten
references, then taking the front part of the resulting trace.
For all our experiments, the buffer cache is warmed up
with the first 1/100 portion of the reduced trace before
results are obtained with the following 1/20 part of the
trace. The characteristics of the reduced trace as
compared with the original TPC-C trace are shown in
Table 1.

2. Hit Ratio is No Longer the Adequate
 Performance Metric with Nonvolatile
 Cache
In traditional buffer cache replacement research the hit
ratio is a common metric that is used to compare the
performance of replacement schemes. Though the hit ratio
metric may not be an exact representation of performance
in real systems due to varies system implementation
overhead, it does provide a close indication of what kind
of performance to expect in reality. Hence, this metric has
been widely used. In this section, we show that for
nonvolatile buffer caches, however, the hit ratio is no
longer the appropriate indicator of performance. We show
that with nonvolatile caches, instead of the hit ratio, using
the number of disk accesses directly is more appropriate.
Based on this observation, we show that using the MIN
replacement algorithm is no longer optimal (when the
number of disk accesses is the metric of interest), but that
improvements to using MIN can be made by
distinguishing read and write operations.
2.1 Hit Ratio Not a Good Indicator of User Perceived
Performance

Figure 2 shows the performance of LRU-V and LRU-G.
Figure 2(a) shows the hit ratio of the two algorithms,
while Figure 2(b) shows the response time. The x-axis for
both results is the proportion of nonvolatile space in
nonvolatile cache ranging from 10% to 90% of the total
cache size.

An interesting observation can be made in the 10% to
40% range of these two graphs. Figure 2(a) shows that the
hit ratio of LRU-G is always higher than that of LRU-V.
However, from Figure 2(b), we see that for the same
range LRU-V shows better response time than LRU-G.
This is rather peculiar as if the hit ratio is high, then one
would expect the response time perceived by the user to
be shorter. To understand the reason behind this
discrepancy, let us review the actions taken when a
reference is made to the buffer cache.

Table 2: Number of disk accesses for hit/miss with
read/write operations in volatile and nonvolatile caches.
(*Though the value in Hit-Write of Volatile buffer cache
should be 1 to maintain consistency, systems generally
use the copy-back policy for performance reasons. In this
more common case, there is no disk access. Hence, we
mark this space as 0.)

Table 2 compares the number of disk accesses that are
made when hit/miss occurs on volatile and nonvolatile
caches. From this table, we observe two peculiar
phenomena. First, in the nonvolatile cache there is a disk
access even upon a hit on a write. In traditional caches,
when a hit occurs, no disk access will occur. (With the
write-through policy one disk access will occur, but this
policy is generally avoided due to performance
degradation. Hence, we denote it as incurring zero
accesses.) This disk access can be explained with Figure

 TPC-C Trace Reduced Trace

Total Request 99.4 GB 497.2 MB

Reference Set 16.9 GB 200.2 MB

Read Request 84.2GB(84.65%) 394.8MB(79.4%)

Write Request 15.2GB(15.34%) 102.4MB(20.6%)

(a) Hit ratio (b) Response time
Figure 2: Performance comparison between the LRU-V and LRU-G nonvolatile management policies.

550

600

650

700

750

800

850

900

10% 20% 30% 40% 50% 60% 70% 80% 90%

Nonvolatile Space Size(%)

Re
spo

nse
 Ti

me
(se

c)

LRU-V
LRU-G

65.00%

67.00%

69.00%

71.00%

73.00%

75.00%

77.00%

79.00%

10% 20% 30% 40% 50% 60% 70% 80% 90%

Nonvolatile Space Size(%)

Hi
t ra

tio
(%

)

LRU-V
LRU-G

3(a). Consider a write request to Block 10, which is found
in volatile space. This is a write operation, and since the
‘Write Nonvolatile Assumption’ states that blocks must
be written in nonvolatile space, we need to move the
newly written block to nonvolatile space. When this
happens, a block in nonvolatile space needs to be
removed and written to disk. Hence, a disk access
happens even on a hit upon write.

The second peculiar phenomenon is that two disk
accesses may occur upon a read miss. This is explained
using Figure 3(b). Say Block 20 is being read and a cache
miss occurs. Block 20 must be brought in from disk,
hence one disk access. As one block is fetched, one block
must be replaced. If the victim block to be evicted is
found in nonvolatile space (which can happen only with

policies such as LRU-G), this block must be written back
to disk, and hence the second disk access. (Note that this
violates the ‘Clean Separation Assumption’.) Since in
LRU-V all read requests are serviced only in volatile
space, this situation cannot arise.

From these observations, we come to two important

findings. The first is that unlike traditional caches,
distinguishing read and write operations is important for
nonvolatile caches. The second is that the number of
cache misses is not synonymous with the number of disk
accesses, which is a major performance indicator of cache
performance.

The reason behind the performance discrepancy found
in Figure 2 can be explained from these observations.

Even though the hit ratio using LRU-G is higher than that
of LRU-V, the number of disk accesses was actually
greater with LRU-G. Hence, for nonvolatile caches, the
hit ratio is no longer the appropriate indicator of cache
performance, but rather, the number of disk accesses

should be used directly. This is evidenced in Figure 4,
where Figure 4(a) is the same figure shown in Figure
2(b), that is, the response time when using the two
policies, and Figure 4(b) is the number of disk accesses
that occur due to each policy. We see that, indeed, the
number of disk accesses is a good representation of user
perceived performance.

2.2 Performance Better than MIN in Nonvolatile

Caches
Belady’s MIN algorithm is the proven optimal
replacement algorithm for traditional volatile cache
management [3]. Using hit ratio as the performance
metric, Belady proves that MIN will achieve the highest
hit ratio when replacing the block that will be used
furthest in the future. Though unrealizable because one
cannot know future references, MIN has served the buffer
management research community by setting a goal to
reach, since traditionally the hit ratio is a close indicator
of user perceived performance for volatile caches.

A similar question can be raised with nonvolatile
caches. Given that we somehow know the future, what is
the best management policy possible with nonvolatile
caches? Is MIN still the best policy? In an attempt to
answer these questions we use the MIN algorithm as the
underlying policy. Recall, however, that MIN was
optimized for the hit ratio metric. Since for nonvolatile
cache the hit ratio is

no longer the appropriate performance metric we choose
to use the number of disk accesses as suggested in the
previous section. Also, because of the ‘Clean Separation
Assumption’, we employ the MIN policy at each space
separately

To minimize the number of disk accesses, again we start
from Table 2. Here, we had observed two situations
where an extra disk access occurs aside from the norm.
The first is when a write hit occurs in volatile space and
the second is when a read miss replaces a dirty block from
nonvolatile space. Since the second situation can arise
only when volatile and nonvolatile space is managed
together, we do not consider this situation in this paper as

this violates the ‘Clean Separation Assumption’.
Let us now concentrate on the first situation. When a

write hit occurs in volatile space, the dirty block must be
moved to nonvolatile space. This move will force a
replacement of a dirty victim block, resulting in a write

(a) Response time (b) Number of disk accesses
Figure 4: Performance comparison between the LRU-V and LRU-G nonvolatile management policies

Figure 3: Actions taken in a nonvolatile cache.

550

600

650

700

750

800

850

900

10% 20% 30% 40% 50% 60% 70% 80% 90%

Nonvolatile Space Size(%)

R
es

po
ns

e
T

im
e(

se
c)

LRU-V

LRU-G

100000

105000

110000

115000

120000

125000

130000

135000

140000

145000

150000

10% 20% 30% 40% 50% 60% 70% 80% 90%

Nonvolatile Space Size(%)

 N
um

be
r o

f D
isk

 A
cc

ess

LRU-V
LRU-G

disk access. This disk access is inevitable. The question is
what we can do to improve performance. The answer is
that since a write hit in volatile space will lead to a miss
anyway, anytime we need to find a victim block due to a
miss we look for a block that will write hit in volatile
space with its next reference. This will allow the would-
be victim block (the block to be referenced furthest in the
future) to not be evicted and be kept in cache longer,
helping improve performance. We will refer to this policy
as MIN+ to simplify the discussion.

Figure 5: Example of cache state evolution using MIN
and MIN+.

Consider the example depicted in Figure 5. There are a
total of five cache blocks in this nonvolatile cache, of
which three comprise volatile space (represented by the
clear blocks) and two comprise nonvolatile space
(represented by the shaded blocks). Blocks 1, 2, and 3 are
currently residing in volatile space and Blocks 4 and 5 are
residing in nonvolatile space. The reference string
references Blocks 6,3,2,1 with the R and W values in
parenthesis indicating Read and Write references,
respectively. Recall that volatile and nonvolatile spaces
are being managed separately with MIN. The Hit/Miss
column indicates the hit or miss incurred by the particular
reference and the Disk Access column indicates whether a
disk access is incurred with the reference.

Upon read reference to Block 6 a miss occurs with the
MIN algorithm and of the 3 blocks in volatile space Block
1 is replaced since it is referenced furthest in the future.

For MIN+, the same miss occurs, but instead of Block 1,
Block 3 is replaced because the next reference to Block 3
is a write.

The next reference is a write to Block 3. For MIN, this
is a write hit in volatile space, hence we move Block 3 to
nonvolatile space leading to an eviction of Block 4.
(Block 5 could have been evicted here without altering
the discussion.) For MIN+, it is a miss to nonvolatile
space. Hence, Block 4 is evicted and replaced with Block
3. We see here that a disk access due to Block 3 is
inevitable for both MIN and MIN+.

The third reference to Block 2 is a hit for both cases.
Finally, the last reference is a read reference to Block 1.
This is where MIN and MIN+ differ. By not having
evicted Block 1 when Block 6 was referenced, and instead
having had evicted Block 3, which was useless in volatile
space anyway, MIN+ is able to save a disk access with
this last access.

We see that even though the total hit/miss count for
MIN and MIN+ is identical, we find that the number of
disk accesses may be reduced by evicting blocks in
volatile space that will write with its next reference,
instead of evicting blocks that will be referenced in the
furthest future, as is done with MIN.

Figure 6 compares the performance of MIN and MIN+
obtained through simulations. We see that MIN can be
improved by distinguishing read and write operations and
evicting blocks with next write references from volatile
space.

3. Putting Theory into Practice
In the previous section, we showed that performance of
using the MIN algorithm may be improved (in terms of
the number of disk accesses) by selecting a victim block
from volatile space whose next reference is a write. In this
section, we show that this is also applicable to practical
algorithms in use today, specifically, the LRU algorithm.
In the first part of this section, we use the crystal ball
approach and quantify the improvement that is possible
when future knowledge is available. In the latter part of
the section, we present a scheme that is more practical in
that it is based on acquired history.

(a) Number of disk accesses (b) Response time
Figure 6: Performance comparison of MIN and MIN+

73000

73500

74000

74500

75000

75500

76000

76500

77000

77500

78000

78500

5% 10% 20% 30% 40%

Nonvolatile Space Size(%)

Nu
mb

er
of

 D
isk

 A
cc

es
s

MIN
MIN +

1.38

Numbers represent percentage improvement over MIN

1.33

1.27 1.05

0.91

430

440

450

460

470

480

490

5% 10% 20% 30% 40%

Nonvolatile Space Size(%)

R
e
sp
o
n
se
 T
im
e
(s
e
c

M IN

MIN +

3.00

2.92
2.73 2.53 2.36

Num bers represent percentage im provem ent

over MIN

3.1 Improving LRU with a Crystal Ball
We showed that for nonvolatile cache MIN could be
improved by distinguishing reads and writes to volatile
and nonvolatile space. Using the same technique used
with MIN+, here, we show that similar improvements are
possible with practical replacement algorithms such as
LRU. The improvements are experimentally quantified in
this section.

Assuming that we have a crystal ball that tells us
whether the next reference is a write or a read, the LRU
replacement algorithm can be augmented with the same
technique used with MIN+ so that the block whose next
reference is a write is evicted from cache. This is
implemented in the following manner. (We call this
modified algorithm LRU+.) Whenever a block is brought
into volatile space due to a miss or is hit in volatile space,
the block is checked to see if its next reference is a write
or a read. If it is a read, then, as is normally done, we
move this block to the MRU-end of the LRU list. If it is a
write, then this block is the next candidate to be evicted.
Hence, it is moved to the LRU-end of the LRU list.

Figure 7 shows the performance difference between
LRU and LRU+. The results clearly show that the number
of disk accesses is an efficient indicator for user perceived
response time performance and that there is room for
improvement in the management of the buffer cache. For
a wide range of nonvolatile space sizes, the improvement
in performance is steadily in the 7 to 8% range.

3.2 Write History based LRU
In the previous subsection, we showed that there is room
for improvement in managing nonvolatile cache.
Unfortunately, LRU+ required future knowledge, which,
in reality, is not easy to come by. Here, we propose a

more feasible scheme based on the observations of the
previous sections. The key point in improving
performance as described in the previous sections is that
blocks in volatile space with next write reference should
not hold a cache block as it will be of no benefit anyway.
Hence, devising a scheme to correctly guess a write
access is crucial.

Observe from Figure 8 the write reference behavior of
blocks used in our experiments. Figure 8(a) shows the
absolute frequency of write reference gaps. A write
reference gap is the number of read references between
two write references. That is, for every number of read
references between two write references we count all such
occurrences. These values are plotted in Figure 8(a). For
example, there are roughly 18,000 occurrences where
there is zero read reference between two write references.
Figure 8(b) shows the relative cumulative frequency
(accumulated percentage) of these counts. Note that the
majority of writes come in succession and roughly 95% of
writes have less than 3 reads between write references.
This means that when a write reference occurs another
write will occur in close proximity.

Based on this observation, we devise a crude, but simple
history based scheme where we keep a list of blocks that
have been write referenced, which we will call the write-
history list. When a block that is headed to volatile space
is referenced (whether on a miss or a hit) we check the
write-history list to see if a write reference on that block
had occurred previously. If it had, the block is placed at
the LRU-end of the LRU list. This block is retained on the
LRU side of the LRU list (even upon a subsequent read
hit) until evicted. Otherwise, it is placed on the MRU-end
as would be done normally. Cache management in
nonvolatile space remains unchanged. We call this

Figure 8: Write reference behavior observed for the trace used.

(a) Absolute frequency of write reference gaps (b) Accumulated percentage

(a) Number of disk accesses (b) Response time
Figure 7: Performance comparison of LRU and LRU+.

Write Reference Gap

0

5000

10000

15000

20000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Reference Gap

Oc
cu

rre
nc

es

Write Reference Gap

0%

20%

40%

60%

80%

100%

120%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Reference Gap

Ac
cum

mu
late

d P
erc

en

520

540

560

580

600

620

640

5.00% 10.00% 20.00% 30.00% 40.00%

Nonvolatile space size(%)

Re
sp

on
se

Ti
me

(se
c)

LRU
LRU +

7.65 7.74 7.80
7.99

8.23

Numbers represent percentage improvement over
LRU90000

92000
94000
96000
98000

100000
102000
104000
106000
108000
110000

5.00% 10.00% 20.00% 30.00% 40.00%

Nonvolatile space size(%)

Nu
mb

er
of

 D
isk

 A
cc

es
s

LRU

LRU +
8 45 8.35 8 33

8.35

Numbers represent percentage improvement over
LRU

8 45

scheme LRU-WH (for Write History). Note that though
this scheme is employed with the LRU policy for this
study, the write-history scheme may be employed
independently with any other replacement policy.

Figure 9 shows the performance results of LRU-WH as
compared with simply using LRU. The improvement
obtained in these experiments is in the 1% range. This is
nominal compared to the achievable improvement shown
in Figure 7. The significance of this result is that the
improvement was achieved through a crude, first-time
attempt. Research to come up with a better scheme is
continuing even as we write.

4. Summary and Conclusion
A nonvolatile buffer cache provides a computer system
with a means to maintain complete consistency as well as
improve performance. The results of this paper in regards
to nonvolatile buffer cache can be summarized as follows.
First, we showed that the hit ratio that has been a
commonly used metric to measure buffer cache
performance is no longer adequate for caches with
NVRAM. Instead of the hit ratio, we need to count the
number of disk accesses to assess user perceived cache
performance. Second, we showed that because of this
change in performance metric, when managing a buffer
cache with NVRAM, one can do better than when using
the MIN replacement algorithm mainly by distinguishing
read and write operations. With this, we showed that
there is room for improvement in efficiently handling
caches with NVRAM. Finally, based on these findings,
we proposed a simple and practical buffer management
technique, LRU-WH, that improves on LRU by a nominal
1%.

The results here have only set the groundwork for much
more research to be done. Admittedly, the experiments
were conducted with only one set of traces, hence we
need to consider traces that have a variety of
characteristics. The LRU-WH, though a good starting
point, is not satisfactory. There certainly should be a way
to do better, and this needs to be explored as well. The
three assumptions of this paper are not stone-graved.
They could be relaxed in one way or another. How this
will influence the analytical results as well as the
experimental results are some of the questions that are
still open and need to be answered.

Acknowledgement
This work was supported in part by grant No. R01-2004-
000-10188-0 from the Basic Research Program of the
Korea Science & Engineering Foundation.

References
[1] S. Akyurek and K. Salem, “Management of Partially
Safe Buffers,” IEEE Transactions on Computers, Vol. 44
No. 3 pp. 394-407, 1995.
[2] M. Baker, S. Asami, E. Deprit, J. Ousterhout, and M.
Seltzer, “Non-volatile memory for fast, reliable file
systems,” in Proc. of the 5th International Conference on
Architectural Support for Programming Languages and
Operating Systems, pp. 10--22, October 1992.
[3] L. Belady, “A Study of Replacement of Algorithms
for a Virtual Storage Computer,” IBM Systems Journal,
5(2):78–101, 1966.
[4] N. K. Edel, D. Tuteja, E. L. Miller, and S. A. Brandt,
“MRAMFS: a compressing file system for non-volatile
RAM,” in Proc. of the 12th International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, October 2004.
[5] T. R. Haining and D. D. E. Long, “Management
policies for non-volatile write caches,” in Proc. of the
IEEE International Performance, Computing and
Communications Conference, pp. 321–328, Feb. 1999.
[6] E. L. Miller, S. A. Brandt, and D. D. E. Long,
“HeRMES: High Performance Reliable MRAM-Enabled
Storage,” in Proc. of the 8th IEEE Workshop on Hot
Topics in Operating Systems, pp. 83-87, 2001.
[7] A. A. Wang, P. Reiher, G. J. Popek, and G. H.
Kuenning, “Conquest: better performance through a
disk/persistent-RAM hybrid file system,” in Proc. of the
2002 USENIX Annual Conference, June 2002.
[8] Y. Zhou, Z. Chen and K. Li. “Second-Level Buffer
Cache Management,” IEEE Transactions on Parallel and
Distributed Systems, Vol. 15, No. 7, July, 2004.
[9] The DiskSim Simulation Environment (Version 3.0).
http://www.pdl.cmu.edu/DiskSim/index.html
[10]http://www.memorystrategies.com/report/EmergingM
emories.htm, Emerging Memories: Applications, Device
and Technology.
[11] http://www.ramtron.com/doc/Products/overview.asp

(a) Number of disk accesses (b) Response time
Figure 9: Performance comparison of LRU and LRU-WH.

520

540

560

580

600

620

640

5.00% 10.00% 20.00% 30.00% 40.00%

Nonvolatile space size(%)

Re
sp

on
se

Ti
me

(se
c)

LRU
LRU-WH

0.29
0.3
5

0.61
0.97

1.35

Numbers represent percentage improvement over
LRU

90000

92000
94000

96000

98000
100000

102000

104000

106000
108000

110000

5.00% 10.00% 20.00% 30.00% 40.00%

Nonvolatile space size(%)

Nu
mb

er
 of

 D
isk

 A
cc

es
s

LRU
LRU-WH

0.0 0.1 0.4
0.7

1.16

Numbers represent percentage improvement
over LRU

